本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{log_{100}^{1 + {100}^{(x - 1)}}}{(1 + {100}^{(-x - 1)})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{log_{100}^{{100}^{(x - 1)} + 1}}{({100}^{(-x - 1)} + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{log_{100}^{{100}^{(x - 1)} + 1}}{({100}^{(-x - 1)} + 1)}\right)}{dx}\\=&(\frac{-(({100}^{(-x - 1)}((-1 + 0)ln(100) + \frac{(-x - 1)(0)}{(100)})) + 0)}{({100}^{(-x - 1)} + 1)^{2}})log_{100}^{{100}^{(x - 1)} + 1} + \frac{(\frac{(\frac{(({100}^{(x - 1)}((1 + 0)ln(100) + \frac{(x - 1)(0)}{(100)})) + 0)}{({100}^{(x - 1)} + 1)} - \frac{(0)log_{100}^{{100}^{(x - 1)} + 1}}{(100)})}{(ln(100))})}{({100}^{(-x - 1)} + 1)}\\=&\frac{{100}^{(-x - 1)}log_{100}^{{100}^{(x - 1)} + 1}ln(100)}{({100}^{(-x - 1)} + 1)^{2}} + \frac{{100}^{(x - 1)}}{({100}^{(-x - 1)} + 1)({100}^{(x - 1)} + 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!