本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数log_{100}^{\frac{(1 + {100}^{(x - 1)})}{(1 + {100}^{(-x - 1)})}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = log_{100}^{\frac{{100}^{(x - 1)}}{({100}^{(-x - 1)} + 1)} + \frac{1}{({100}^{(-x - 1)} + 1)}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( log_{100}^{\frac{{100}^{(x - 1)}}{({100}^{(-x - 1)} + 1)} + \frac{1}{({100}^{(-x - 1)} + 1)}}\right)}{dx}\\=&(\frac{(\frac{((\frac{-(({100}^{(-x - 1)}((-1 + 0)ln(100) + \frac{(-x - 1)(0)}{(100)})) + 0)}{({100}^{(-x - 1)} + 1)^{2}}){100}^{(x - 1)} + \frac{({100}^{(x - 1)}((1 + 0)ln(100) + \frac{(x - 1)(0)}{(100)}))}{({100}^{(-x - 1)} + 1)} + (\frac{-(({100}^{(-x - 1)}((-1 + 0)ln(100) + \frac{(-x - 1)(0)}{(100)})) + 0)}{({100}^{(-x - 1)} + 1)^{2}}))}{(\frac{{100}^{(x - 1)}}{({100}^{(-x - 1)} + 1)} + \frac{1}{({100}^{(-x - 1)} + 1)})} - \frac{(0)log_{100}^{\frac{{100}^{(x - 1)}}{({100}^{(-x - 1)} + 1)} + \frac{1}{({100}^{(-x - 1)} + 1)}}}{(100)})}{(ln(100))})\\=&\frac{{100}^{(2x - 2)}}{({100}^{(-x - 1)} + 1)^{2}(\frac{{100}^{(x - 1)}}{({100}^{(-x - 1)} + 1)} + \frac{1}{({100}^{(-x - 1)} + 1)})} + \frac{{100}^{(x - 1)}}{({100}^{(-x - 1)} + 1)(\frac{{100}^{(x - 1)}}{({100}^{(-x - 1)} + 1)} + \frac{1}{({100}^{(-x - 1)} + 1)})} + \frac{{100}^{(-x - 1)}}{({100}^{(-x - 1)} + 1)^{2}(\frac{{100}^{(x - 1)}}{({100}^{(-x - 1)} + 1)} + \frac{1}{({100}^{(-x - 1)} + 1)})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!