本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数x(2{x}^{2} - 1)sqrt(1 - {x}^{2}) - \frac{sin(4arcsin(x))}{4} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 2x^{3}sqrt(-x^{2} + 1) - xsqrt(-x^{2} + 1) - \frac{1}{4}sin(4arcsin(x))\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 2x^{3}sqrt(-x^{2} + 1) - xsqrt(-x^{2} + 1) - \frac{1}{4}sin(4arcsin(x))\right)}{dx}\\=&2*3x^{2}sqrt(-x^{2} + 1) + \frac{2x^{3}(-2x + 0)*\frac{1}{2}}{(-x^{2} + 1)^{\frac{1}{2}}} - sqrt(-x^{2} + 1) - \frac{x(-2x + 0)*\frac{1}{2}}{(-x^{2} + 1)^{\frac{1}{2}}} - \frac{1}{4}cos(4arcsin(x))*4(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})})\\=&6x^{2}sqrt(-x^{2} + 1) - \frac{2x^{4}}{(-x^{2} + 1)^{\frac{1}{2}}} - sqrt(-x^{2} + 1) + \frac{x^{2}}{(-x^{2} + 1)^{\frac{1}{2}}} - \frac{cos(4arcsin(x))}{(-x^{2} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!