本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{({x}^{3} + 2{x}^{2})}^{\frac{1}{3}} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = (x^{3} + 2x^{2})^{\frac{1}{3}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( (x^{3} + 2x^{2})^{\frac{1}{3}}\right)}{dx}\\=&(\frac{\frac{1}{3}(3x^{2} + 2*2x)}{(x^{3} + 2x^{2})^{\frac{2}{3}}})\\=&\frac{x^{2}}{(x^{3} + 2x^{2})^{\frac{2}{3}}} + \frac{4x}{3(x^{3} + 2x^{2})^{\frac{2}{3}}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{x^{2}}{(x^{3} + 2x^{2})^{\frac{2}{3}}} + \frac{4x}{3(x^{3} + 2x^{2})^{\frac{2}{3}}}\right)}{dx}\\=&(\frac{\frac{-2}{3}(3x^{2} + 2*2x)}{(x^{3} + 2x^{2})^{\frac{5}{3}}})x^{2} + \frac{2x}{(x^{3} + 2x^{2})^{\frac{2}{3}}} + \frac{4(\frac{\frac{-2}{3}(3x^{2} + 2*2x)}{(x^{3} + 2x^{2})^{\frac{5}{3}}})x}{3} + \frac{4}{3(x^{3} + 2x^{2})^{\frac{2}{3}}}\\=&\frac{-2x^{4}}{(x^{3} + 2x^{2})^{\frac{5}{3}}} - \frac{16x^{3}}{3(x^{3} + 2x^{2})^{\frac{5}{3}}} + \frac{2x}{(x^{3} + 2x^{2})^{\frac{2}{3}}} - \frac{32x^{2}}{9(x^{3} + 2x^{2})^{\frac{5}{3}}} + \frac{4}{3(x^{3} + 2x^{2})^{\frac{2}{3}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!