本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(sin(x) + cot(x) + 1)}{(tan(x) + csc(x) + 1)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{sin(x)}{(tan(x) + csc(x) + 1)} + \frac{cot(x)}{(tan(x) + csc(x) + 1)} + \frac{1}{(tan(x) + csc(x) + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{sin(x)}{(tan(x) + csc(x) + 1)} + \frac{cot(x)}{(tan(x) + csc(x) + 1)} + \frac{1}{(tan(x) + csc(x) + 1)}\right)}{dx}\\=&(\frac{-(sec^{2}(x)(1) + -csc(x)cot(x) + 0)}{(tan(x) + csc(x) + 1)^{2}})sin(x) + \frac{cos(x)}{(tan(x) + csc(x) + 1)} + (\frac{-(sec^{2}(x)(1) + -csc(x)cot(x) + 0)}{(tan(x) + csc(x) + 1)^{2}})cot(x) + \frac{-csc^{2}(x)}{(tan(x) + csc(x) + 1)} + (\frac{-(sec^{2}(x)(1) + -csc(x)cot(x) + 0)}{(tan(x) + csc(x) + 1)^{2}})\\=&\frac{-sin(x)sec^{2}(x)}{(tan(x) + csc(x) + 1)^{2}} + \frac{sin(x)cot(x)csc(x)}{(tan(x) + csc(x) + 1)^{2}} + \frac{cos(x)}{(tan(x) + csc(x) + 1)} - \frac{cot(x)sec^{2}(x)}{(tan(x) + csc(x) + 1)^{2}} + \frac{cot^{2}(x)csc(x)}{(tan(x) + csc(x) + 1)^{2}} - \frac{csc^{2}(x)}{(tan(x) + csc(x) + 1)} - \frac{sec^{2}(x)}{(tan(x) + csc(x) + 1)^{2}} + \frac{cot(x)csc(x)}{(tan(x) + csc(x) + 1)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!