数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 s 求 3 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{({e}^{(st)}(1 + Cs))}{((1 + As)(1 + Bs))} 关于 s 的 3 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{Cs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)} + \frac{{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{Cs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)} + \frac{{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)}\right)}{ds}\\=&(\frac{-(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{2}})Cs{e}^{(ts)} + \frac{C{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)} + \frac{Cs({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)} + (\frac{-(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{2}}){e}^{(ts)} + \frac{({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)}\\=& - \frac{CBs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{CAs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{2CABs^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} + \frac{C{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)} + \frac{tCs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)} - \frac{B{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{A{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{2ABs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} + \frac{t{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( - \frac{CBs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{CAs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{2CABs^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} + \frac{C{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)} + \frac{tCs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)} - \frac{B{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{A{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{2ABs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} + \frac{t{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)}\right)}{ds}\\=& - (\frac{-2(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{3}})CBs{e}^{(ts)} - \frac{CB{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{CBs({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)^{2}} - (\frac{-2(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{3}})CAs{e}^{(ts)} - \frac{CA{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{CAs({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)^{2}} - 2(\frac{-2(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{3}})CABs^{2}{e}^{(ts)} - \frac{2CAB*2s{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{2CABs^{2}({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)^{2}} + (\frac{-(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{2}})C{e}^{(ts)} + \frac{C({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)} + (\frac{-(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{2}})tCs{e}^{(ts)} + \frac{tC{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)} + \frac{tCs({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)} - (\frac{-2(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{3}})B{e}^{(ts)} - \frac{B({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)^{2}} - (\frac{-2(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{3}})A{e}^{(ts)} - \frac{A({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)^{2}} - 2(\frac{-2(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{3}})ABs{e}^{(ts)} - \frac{2AB{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{2ABs({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)^{2}} + (\frac{-(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{2}})t{e}^{(ts)} + \frac{t({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)}\\=&\frac{2CB^{2}s{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} + \frac{4CABs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} + \frac{8CAB^{2}s^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} - \frac{2CB{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{2tCBs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} + \frac{2CA^{2}s{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} + \frac{8CA^{2}Bs^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} - \frac{2CA{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{2tCAs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} + \frac{8CA^{2}B^{2}s^{3}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} - \frac{6CABs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{4tCABs^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} + \frac{2tC{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)} + \frac{t^{2}Cs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)} + \frac{2B^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} + \frac{4AB{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} + \frac{8AB^{2}s{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} - \frac{2tB{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} + \frac{2A^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} + \frac{8A^{2}Bs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} - \frac{2tA{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} + \frac{8A^{2}B^{2}s^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} - \frac{2AB{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{4tABs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} + \frac{t^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{2CB^{2}s{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} + \frac{4CABs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} + \frac{8CAB^{2}s^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} - \frac{2CB{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{2tCBs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} + \frac{2CA^{2}s{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} + \frac{8CA^{2}Bs^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} - \frac{2CA{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{2tCAs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} + \frac{8CA^{2}B^{2}s^{3}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} - \frac{6CABs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{4tCABs^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} + \frac{2tC{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)} + \frac{t^{2}Cs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)} + \frac{2B^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} + \frac{4AB{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} + \frac{8AB^{2}s{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} - \frac{2tB{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} + \frac{2A^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} + \frac{8A^{2}Bs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} - \frac{2tA{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} + \frac{8A^{2}B^{2}s^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} - \frac{2AB{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{4tABs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} + \frac{t^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)}\right)}{ds}\\=&2(\frac{-3(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{4}})CB^{2}s{e}^{(ts)} + \frac{2CB^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} + \frac{2CB^{2}s({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)^{3}} + 4(\frac{-3(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{4}})CABs{e}^{(ts)} + \frac{4CAB{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} + \frac{4CABs({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)^{3}} + 8(\frac{-3(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{4}})CAB^{2}s^{2}{e}^{(ts)} + \frac{8CAB^{2}*2s{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} + \frac{8CAB^{2}s^{2}({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)^{3}} - 2(\frac{-2(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{3}})CB{e}^{(ts)} - \frac{2CB({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)^{2}} - 2(\frac{-2(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{3}})tCBs{e}^{(ts)} - \frac{2tCB{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{2tCBs({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)^{2}} + 2(\frac{-3(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{4}})CA^{2}s{e}^{(ts)} + \frac{2CA^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} + \frac{2CA^{2}s({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)^{3}} + 8(\frac{-3(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{4}})CA^{2}Bs^{2}{e}^{(ts)} + \frac{8CA^{2}B*2s{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} + \frac{8CA^{2}Bs^{2}({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)^{3}} - 2(\frac{-2(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{3}})CA{e}^{(ts)} - \frac{2CA({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)^{2}} - 2(\frac{-2(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{3}})tCAs{e}^{(ts)} - \frac{2tCA{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{2tCAs({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)^{2}} + 8(\frac{-3(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{4}})CA^{2}B^{2}s^{3}{e}^{(ts)} + \frac{8CA^{2}B^{2}*3s^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} + \frac{8CA^{2}B^{2}s^{3}({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)^{3}} - 6(\frac{-2(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{3}})CABs{e}^{(ts)} - \frac{6CAB{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{6CABs({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)^{2}} - 4(\frac{-2(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{3}})tCABs^{2}{e}^{(ts)} - \frac{4tCAB*2s{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{4tCABs^{2}({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)^{2}} + 2(\frac{-(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{2}})tC{e}^{(ts)} + \frac{2tC({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)} + (\frac{-(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{2}})t^{2}Cs{e}^{(ts)} + \frac{t^{2}C{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)} + \frac{t^{2}Cs({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)} + 2(\frac{-3(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{4}})B^{2}{e}^{(ts)} + \frac{2B^{2}({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)^{3}} + 4(\frac{-3(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{4}})AB{e}^{(ts)} + \frac{4AB({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)^{3}} + 8(\frac{-3(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{4}})AB^{2}s{e}^{(ts)} + \frac{8AB^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} + \frac{8AB^{2}s({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)^{3}} - 2(\frac{-2(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{3}})tB{e}^{(ts)} - \frac{2tB({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)^{2}} + 2(\frac{-3(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{4}})A^{2}{e}^{(ts)} + \frac{2A^{2}({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)^{3}} + 8(\frac{-3(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{4}})A^{2}Bs{e}^{(ts)} + \frac{8A^{2}B{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} + \frac{8A^{2}Bs({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)^{3}} - 2(\frac{-2(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{3}})tA{e}^{(ts)} - \frac{2tA({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)^{2}} + 8(\frac{-3(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{4}})A^{2}B^{2}s^{2}{e}^{(ts)} + \frac{8A^{2}B^{2}*2s{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} + \frac{8A^{2}B^{2}s^{2}({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)^{3}} - 2(\frac{-2(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{3}})AB{e}^{(ts)} - \frac{2AB({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)^{2}} - 4(\frac{-2(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{3}})tABs{e}^{(ts)} - \frac{4tAB{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{4tABs({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)^{2}} + (\frac{-(B + A + AB*2s + 0)}{(Bs + As + ABs^{2} + 1)^{2}})t^{2}{e}^{(ts)} + \frac{t^{2}({e}^{(ts)}((t)ln(e) + \frac{(ts)(0)}{(e)}))}{(Bs + As + ABs^{2} + 1)}\\=&\frac{-6CB^{3}s{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{4}} - \frac{18CAB^{2}s{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{4}} - \frac{36CAB^{3}s^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{4}} + \frac{6CB^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} + \frac{6tCB^{2}s{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} - \frac{18CA^{2}Bs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{4}} - \frac{72CA^{2}B^{2}s^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{4}} + \frac{12CAB{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} + \frac{12tCABs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} - \frac{72CA^{2}B^{3}s^{3}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{4}} + \frac{36CAB^{2}s{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} + \frac{24tCAB^{2}s^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} - \frac{6tCB{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{3t^{2}CBs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{6CA^{3}s{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{4}} - \frac{36CA^{3}Bs^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{4}} + \frac{6CA^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} + \frac{6tCA^{2}s{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} - \frac{72CA^{3}B^{2}s^{3}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{4}} + \frac{36CA^{2}Bs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} + \frac{24tCA^{2}Bs^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} - \frac{6tCA{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{3t^{2}CAs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{48CA^{3}B^{3}s^{4}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{4}} + \frac{48CA^{2}B^{2}s^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} + \frac{24tCA^{2}B^{2}s^{3}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} - \frac{6CAB{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{18tCABs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{6t^{2}CABs^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} + \frac{3t^{2}C{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)} + \frac{t^{3}Cs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)} - \frac{6B^{3}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{4}} - \frac{18AB^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{4}} - \frac{36AB^{3}s{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{4}} + \frac{6tB^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} - \frac{18A^{2}B{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{4}} - \frac{72A^{2}B^{2}s{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{4}} + \frac{12tAB{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} - \frac{72A^{2}B^{3}s^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{4}} + \frac{12AB^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} + \frac{24tAB^{2}s{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} - \frac{3t^{2}B{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{6A^{3}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{4}} - \frac{36A^{3}Bs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{4}} + \frac{6tA^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} - \frac{72A^{3}B^{2}s^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{4}} + \frac{12A^{2}B{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} + \frac{24tA^{2}Bs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} - \frac{3t^{2}A{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{48A^{3}B^{3}s^{3}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{4}} + \frac{24A^{2}B^{2}s{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} + \frac{24tA^{2}B^{2}s^{2}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{3}} - \frac{6tAB{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} - \frac{6t^{2}ABs{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)^{2}} + \frac{t^{3}{e}^{(ts)}}{(Bs + As + ABs^{2} + 1)}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。