本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(sqrt(1 + xsin(x)) - sqrt(cos(x)))tan(x)}{x} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{tan(x)sqrt(xsin(x) + 1)}{x} - \frac{tan(x)sqrt(cos(x))}{x}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{tan(x)sqrt(xsin(x) + 1)}{x} - \frac{tan(x)sqrt(cos(x))}{x}\right)}{dx}\\=&\frac{-tan(x)sqrt(xsin(x) + 1)}{x^{2}} + \frac{sec^{2}(x)(1)sqrt(xsin(x) + 1)}{x} + \frac{tan(x)(sin(x) + xcos(x) + 0)*\frac{1}{2}}{x(xsin(x) + 1)^{\frac{1}{2}}} - \frac{-tan(x)sqrt(cos(x))}{x^{2}} - \frac{sec^{2}(x)(1)sqrt(cos(x))}{x} - \frac{tan(x)*-sin(x)*\frac{1}{2}}{x(cos(x))^{\frac{1}{2}}}\\=&\frac{-tan(x)sqrt(xsin(x) + 1)}{x^{2}} + \frac{sqrt(xsin(x) + 1)sec^{2}(x)}{x} + \frac{sin(x)tan(x)}{2(xsin(x) + 1)^{\frac{1}{2}}x} + \frac{cos(x)tan(x)}{2(xsin(x) + 1)^{\frac{1}{2}}} + \frac{tan(x)sqrt(cos(x))}{x^{2}} - \frac{sqrt(cos(x))sec^{2}(x)}{x} + \frac{sin(x)tan(x)}{2xcos^{\frac{1}{2}}(x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!