本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(\frac{1}{(ab)}){e}^{(\frac{-({(x - c)}^{2})}{(2({a}^{2}))})} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{{e}^{(\frac{\frac{-1}{2}x^{2}}{a^{2}} + \frac{cx}{a^{2}} - \frac{\frac{1}{2}c^{2}}{a^{2}})}}{ab}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{{e}^{(\frac{\frac{-1}{2}x^{2}}{a^{2}} + \frac{cx}{a^{2}} - \frac{\frac{1}{2}c^{2}}{a^{2}})}}{ab}\right)}{dx}\\=&\frac{({e}^{(\frac{\frac{-1}{2}x^{2}}{a^{2}} + \frac{cx}{a^{2}} - \frac{\frac{1}{2}c^{2}}{a^{2}})}((\frac{\frac{-1}{2}*2x}{a^{2}} + \frac{c}{a^{2}} + 0)ln(e) + \frac{(\frac{\frac{-1}{2}x^{2}}{a^{2}} + \frac{cx}{a^{2}} - \frac{\frac{1}{2}c^{2}}{a^{2}})(0)}{(e)}))}{ab}\\=&\frac{-x{e}^{(\frac{\frac{-1}{2}x^{2}}{a^{2}} + \frac{cx}{a^{2}} - \frac{\frac{1}{2}c^{2}}{a^{2}})}}{a^{3}b} + \frac{c{e}^{(\frac{\frac{-1}{2}x^{2}}{a^{2}} + \frac{cx}{a^{2}} - \frac{\frac{1}{2}c^{2}}{a^{2}})}}{a^{3}b}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-x{e}^{(\frac{\frac{-1}{2}x^{2}}{a^{2}} + \frac{cx}{a^{2}} - \frac{\frac{1}{2}c^{2}}{a^{2}})}}{a^{3}b} + \frac{c{e}^{(\frac{\frac{-1}{2}x^{2}}{a^{2}} + \frac{cx}{a^{2}} - \frac{\frac{1}{2}c^{2}}{a^{2}})}}{a^{3}b}\right)}{dx}\\=&\frac{-{e}^{(\frac{\frac{-1}{2}x^{2}}{a^{2}} + \frac{cx}{a^{2}} - \frac{\frac{1}{2}c^{2}}{a^{2}})}}{a^{3}b} - \frac{x({e}^{(\frac{\frac{-1}{2}x^{2}}{a^{2}} + \frac{cx}{a^{2}} - \frac{\frac{1}{2}c^{2}}{a^{2}})}((\frac{\frac{-1}{2}*2x}{a^{2}} + \frac{c}{a^{2}} + 0)ln(e) + \frac{(\frac{\frac{-1}{2}x^{2}}{a^{2}} + \frac{cx}{a^{2}} - \frac{\frac{1}{2}c^{2}}{a^{2}})(0)}{(e)}))}{a^{3}b} + \frac{c({e}^{(\frac{\frac{-1}{2}x^{2}}{a^{2}} + \frac{cx}{a^{2}} - \frac{\frac{1}{2}c^{2}}{a^{2}})}((\frac{\frac{-1}{2}*2x}{a^{2}} + \frac{c}{a^{2}} + 0)ln(e) + \frac{(\frac{\frac{-1}{2}x^{2}}{a^{2}} + \frac{cx}{a^{2}} - \frac{\frac{1}{2}c^{2}}{a^{2}})(0)}{(e)}))}{a^{3}b}\\=&\frac{-{e}^{(\frac{\frac{-1}{2}x^{2}}{a^{2}} + \frac{cx}{a^{2}} - \frac{\frac{1}{2}c^{2}}{a^{2}})}}{a^{3}b} + \frac{x^{2}{e}^{(\frac{\frac{-1}{2}x^{2}}{a^{2}} + \frac{cx}{a^{2}} - \frac{\frac{1}{2}c^{2}}{a^{2}})}}{a^{5}b} - \frac{2cx{e}^{(\frac{\frac{-1}{2}x^{2}}{a^{2}} + \frac{cx}{a^{2}} - \frac{\frac{1}{2}c^{2}}{a^{2}})}}{a^{5}b} + \frac{c^{2}{e}^{(\frac{\frac{-1}{2}x^{2}}{a^{2}} + \frac{cx}{a^{2}} - \frac{\frac{1}{2}c^{2}}{a^{2}})}}{a^{5}b}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!