本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数30240cos({x}^{2}) - 302400{x}^{2}sin({x}^{2}) - 403200{x}^{4}cos({x}^{2}) + 161280{x}^{6}sin({x}^{2}) + 23040{x}^{8}cos({x}^{2}) - 1024{x}^{10}sin({x}^{2}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 30240cos(x^{2}) - 302400x^{2}sin(x^{2}) - 403200x^{4}cos(x^{2}) + 161280x^{6}sin(x^{2}) + 23040x^{8}cos(x^{2}) - 1024x^{10}sin(x^{2})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 30240cos(x^{2}) - 302400x^{2}sin(x^{2}) - 403200x^{4}cos(x^{2}) + 161280x^{6}sin(x^{2}) + 23040x^{8}cos(x^{2}) - 1024x^{10}sin(x^{2})\right)}{dx}\\=&30240*-sin(x^{2})*2x - 302400*2xsin(x^{2}) - 302400x^{2}cos(x^{2})*2x - 403200*4x^{3}cos(x^{2}) - 403200x^{4}*-sin(x^{2})*2x + 161280*6x^{5}sin(x^{2}) + 161280x^{6}cos(x^{2})*2x + 23040*8x^{7}cos(x^{2}) + 23040x^{8}*-sin(x^{2})*2x - 1024*10x^{9}sin(x^{2}) - 1024x^{10}cos(x^{2})*2x\\=&-665280xsin(x^{2}) - 2217600x^{3}cos(x^{2}) + 1774080x^{5}sin(x^{2}) + 506880x^{7}cos(x^{2}) - 56320x^{9}sin(x^{2}) - 2048x^{11}cos(x^{2})\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!