本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{({x}^{2})}{(a(a - x))} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x^{2}}{(-ax + a^{2})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x^{2}}{(-ax + a^{2})}\right)}{dx}\\=&(\frac{-(-a + 0)}{(-ax + a^{2})^{2}})x^{2} + \frac{2x}{(-ax + a^{2})}\\=&\frac{ax^{2}}{(-ax + a^{2})^{2}} + \frac{2x}{(-ax + a^{2})}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{ax^{2}}{(-ax + a^{2})^{2}} + \frac{2x}{(-ax + a^{2})}\right)}{dx}\\=&(\frac{-2(-a + 0)}{(-ax + a^{2})^{3}})ax^{2} + \frac{a*2x}{(-ax + a^{2})^{2}} + 2(\frac{-(-a + 0)}{(-ax + a^{2})^{2}})x + \frac{2}{(-ax + a^{2})}\\=&\frac{2a^{2}x^{2}}{(-ax + a^{2})^{3}} + \frac{4ax}{(-ax + a^{2})^{2}} + \frac{2}{(-ax + a^{2})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!