本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(\frac{({x}^{4})}{(x + 1)})}^{\frac{1}{3}} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x^{\frac{4}{3}}}{(x + 1)^{\frac{1}{3}}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x^{\frac{4}{3}}}{(x + 1)^{\frac{1}{3}}}\right)}{dx}\\=&(\frac{\frac{-1}{3}(1 + 0)}{(x + 1)^{\frac{4}{3}}})x^{\frac{4}{3}} + \frac{\frac{4}{3}x^{\frac{1}{3}}}{(x + 1)^{\frac{1}{3}}}\\=&\frac{-x^{\frac{4}{3}}}{3(x + 1)^{\frac{4}{3}}} + \frac{4x^{\frac{1}{3}}}{3(x + 1)^{\frac{1}{3}}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-x^{\frac{4}{3}}}{3(x + 1)^{\frac{4}{3}}} + \frac{4x^{\frac{1}{3}}}{3(x + 1)^{\frac{1}{3}}}\right)}{dx}\\=&\frac{-(\frac{\frac{-4}{3}(1 + 0)}{(x + 1)^{\frac{7}{3}}})x^{\frac{4}{3}}}{3} - \frac{\frac{4}{3}x^{\frac{1}{3}}}{3(x + 1)^{\frac{4}{3}}} + \frac{4(\frac{\frac{-1}{3}(1 + 0)}{(x + 1)^{\frac{4}{3}}})x^{\frac{1}{3}}}{3} + \frac{4*\frac{1}{3}}{3(x + 1)^{\frac{1}{3}}x^{\frac{2}{3}}}\\=&\frac{4x^{\frac{4}{3}}}{9(x + 1)^{\frac{7}{3}}} - \frac{8x^{\frac{1}{3}}}{9(x + 1)^{\frac{4}{3}}} + \frac{4}{9(x + 1)^{\frac{1}{3}}x^{\frac{2}{3}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!