本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数arcsin({(\frac{(1 + sin(x))}{2})}^{\frac{1}{2}}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = arcsin((\frac{1}{2}sin(x) + \frac{1}{2})^{\frac{1}{2}})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( arcsin((\frac{1}{2}sin(x) + \frac{1}{2})^{\frac{1}{2}})\right)}{dx}\\=&(\frac{((\frac{\frac{1}{2}(\frac{1}{2}cos(x) + 0)}{(\frac{1}{2}sin(x) + \frac{1}{2})^{\frac{1}{2}}}))}{((1 - ((\frac{1}{2}sin(x) + \frac{1}{2})^{\frac{1}{2}})^{2})^{\frac{1}{2}})})\\=&\frac{cos(x)}{4(\frac{-1}{2}sin(x) + \frac{1}{2})^{\frac{1}{2}}(\frac{1}{2}sin(x) + \frac{1}{2})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!