本次共计算 1 个题目:每一题对 p 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(p + q + r + s)}^{5} 关于 p 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = p^{5} + 5qp^{4} + 5rp^{4} + 5sp^{4} + 10q^{2}p^{3} + 20qrp^{3} + 20qsp^{3} + 10r^{2}p^{3} + 20rsp^{3} + 10s^{2}p^{3} + 10q^{3}p^{2} + 30q^{2}rp^{2} + 30q^{2}sp^{2} + 30qr^{2}p^{2} + 60qrsp^{2} + 30qs^{2}p^{2} + 10r^{3}p^{2} + 30r^{2}sp^{2} + 30rs^{2}p^{2} + 10s^{3}p^{2} + 5q^{4}p + 20q^{3}rp + 20q^{3}sp + 30q^{2}r^{2}p + 60q^{2}rsp + 30q^{2}s^{2}p + 20qr^{3}p + 60qr^{2}sp + 60qrs^{2}p + 20qs^{3}p + 5r^{4}p + 20r^{3}sp + 30r^{2}s^{2}p + 20rs^{3}p + 5s^{4}p + 20q^{3}rs + 5q^{4}s + 30q^{2}r^{2}s + 30q^{2}rs^{2} + 10q^{3}s^{2} + 20qr^{3}s + 30qr^{2}s^{2} + 20qrs^{3} + 10q^{2}s^{3} + 5qr^{4} + 10q^{2}r^{3} + 10q^{3}r^{2} + 5q^{4}r + 5qs^{4} + q^{5} + 5r^{4}s + 10r^{3}s^{2} + 10r^{2}s^{3} + 5rs^{4} + r^{5} + s^{5}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( p^{5} + 5qp^{4} + 5rp^{4} + 5sp^{4} + 10q^{2}p^{3} + 20qrp^{3} + 20qsp^{3} + 10r^{2}p^{3} + 20rsp^{3} + 10s^{2}p^{3} + 10q^{3}p^{2} + 30q^{2}rp^{2} + 30q^{2}sp^{2} + 30qr^{2}p^{2} + 60qrsp^{2} + 30qs^{2}p^{2} + 10r^{3}p^{2} + 30r^{2}sp^{2} + 30rs^{2}p^{2} + 10s^{3}p^{2} + 5q^{4}p + 20q^{3}rp + 20q^{3}sp + 30q^{2}r^{2}p + 60q^{2}rsp + 30q^{2}s^{2}p + 20qr^{3}p + 60qr^{2}sp + 60qrs^{2}p + 20qs^{3}p + 5r^{4}p + 20r^{3}sp + 30r^{2}s^{2}p + 20rs^{3}p + 5s^{4}p + 20q^{3}rs + 5q^{4}s + 30q^{2}r^{2}s + 30q^{2}rs^{2} + 10q^{3}s^{2} + 20qr^{3}s + 30qr^{2}s^{2} + 20qrs^{3} + 10q^{2}s^{3} + 5qr^{4} + 10q^{2}r^{3} + 10q^{3}r^{2} + 5q^{4}r + 5qs^{4} + q^{5} + 5r^{4}s + 10r^{3}s^{2} + 10r^{2}s^{3} + 5rs^{4} + r^{5} + s^{5}\right)}{dp}\\=&5p^{4} + 5q*4p^{3} + 5r*4p^{3} + 5s*4p^{3} + 10q^{2}*3p^{2} + 20qr*3p^{2} + 20qs*3p^{2} + 10r^{2}*3p^{2} + 20rs*3p^{2} + 10s^{2}*3p^{2} + 10q^{3}*2p + 30q^{2}r*2p + 30q^{2}s*2p + 30qr^{2}*2p + 60qrs*2p + 30qs^{2}*2p + 10r^{3}*2p + 30r^{2}s*2p + 30rs^{2}*2p + 10s^{3}*2p + 5q^{4} + 20q^{3}r + 20q^{3}s + 30q^{2}r^{2} + 60q^{2}rs + 30q^{2}s^{2} + 20qr^{3} + 60qr^{2}s + 60qrs^{2} + 20qs^{3} + 5r^{4} + 20r^{3}s + 30r^{2}s^{2} + 20rs^{3} + 5s^{4} + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0\\=&5p^{4} + 20qp^{3} + 20rp^{3} + 20sp^{3} + 30q^{2}p^{2} + 60qrp^{2} + 60qsp^{2} + 30r^{2}p^{2} + 60rsp^{2} + 30s^{2}p^{2} + 20q^{3}p + 60q^{2}rp + 60q^{2}sp + 60qr^{2}p + 120qrsp + 60qs^{2}p + 20r^{3}p + 60r^{2}sp + 60rs^{2}p + 20s^{3}p + 60q^{2}rs + 20q^{3}s + 60qr^{2}s + 60qrs^{2} + 30q^{2}s^{2} + 20qr^{3} + 30q^{2}r^{2} + 20q^{3}r + 20qs^{3} + 5q^{4} + 20r^{3}s + 30r^{2}s^{2} + 20rs^{3} + 5r^{4} + 5s^{4}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 5p^{4} + 20qp^{3} + 20rp^{3} + 20sp^{3} + 30q^{2}p^{2} + 60qrp^{2} + 60qsp^{2} + 30r^{2}p^{2} + 60rsp^{2} + 30s^{2}p^{2} + 20q^{3}p + 60q^{2}rp + 60q^{2}sp + 60qr^{2}p + 120qrsp + 60qs^{2}p + 20r^{3}p + 60r^{2}sp + 60rs^{2}p + 20s^{3}p + 60q^{2}rs + 20q^{3}s + 60qr^{2}s + 60qrs^{2} + 30q^{2}s^{2} + 20qr^{3} + 30q^{2}r^{2} + 20q^{3}r + 20qs^{3} + 5q^{4} + 20r^{3}s + 30r^{2}s^{2} + 20rs^{3} + 5r^{4} + 5s^{4}\right)}{dp}\\=&5*4p^{3} + 20q*3p^{2} + 20r*3p^{2} + 20s*3p^{2} + 30q^{2}*2p + 60qr*2p + 60qs*2p + 30r^{2}*2p + 60rs*2p + 30s^{2}*2p + 20q^{3} + 60q^{2}r + 60q^{2}s + 60qr^{2} + 120qrs + 60qs^{2} + 20r^{3} + 60r^{2}s + 60rs^{2} + 20s^{3} + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0\\=&20p^{3} + 60qp^{2} + 60rp^{2} + 60sp^{2} + 60q^{2}p + 120qrp + 120qsp + 60r^{2}p + 120rsp + 60s^{2}p + 120qrs + 60q^{2}s + 60qr^{2} + 60q^{2}r + 60qs^{2} + 20q^{3} + 60r^{2}s + 60rs^{2} + 20r^{3} + 20s^{3}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 20p^{3} + 60qp^{2} + 60rp^{2} + 60sp^{2} + 60q^{2}p + 120qrp + 120qsp + 60r^{2}p + 120rsp + 60s^{2}p + 120qrs + 60q^{2}s + 60qr^{2} + 60q^{2}r + 60qs^{2} + 20q^{3} + 60r^{2}s + 60rs^{2} + 20r^{3} + 20s^{3}\right)}{dp}\\=&20*3p^{2} + 60q*2p + 60r*2p + 60s*2p + 60q^{2} + 120qr + 120qs + 60r^{2} + 120rs + 60s^{2} + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0\\=&60p^{2} + 120qp + 120rp + 120sp + 120qr + 120qs + 60q^{2} + 120rs + 60r^{2} + 60s^{2}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 60p^{2} + 120qp + 120rp + 120sp + 120qr + 120qs + 60q^{2} + 120rs + 60r^{2} + 60s^{2}\right)}{dp}\\=&60*2p + 120q + 120r + 120s + 0 + 0 + 0 + 0 + 0 + 0\\=&120p + 120q + 120r + 120s\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!