数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数th(lg(x)) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( th(lg(x))\right)}{dx}\\=&\frac{(1 - th^{2}(lg(x)))}{ln{10}(x)}\\=& - \frac{th^{2}(lg(x))}{xln{10}} + \frac{1}{xln{10}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( - \frac{th^{2}(lg(x))}{xln{10}} + \frac{1}{xln{10}}\right)}{dx}\\=& - \frac{-th^{2}(lg(x))}{x^{2}ln{10}} - \frac{-0th^{2}(lg(x))}{xln^{2}{10}} - \frac{2th(lg(x))(1 - th^{2}(lg(x)))}{xln{10}ln{10}(x)} + \frac{-1}{x^{2}ln{10}} + \frac{-0}{xln^{2}{10}}\\=&\frac{th^{2}(lg(x))}{x^{2}ln{10}} - \frac{2th(lg(x))}{x^{2}ln^{2}{10}} + \frac{2th^{3}(lg(x))}{x^{2}ln^{2}{10}} - \frac{1}{x^{2}ln{10}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{th^{2}(lg(x))}{x^{2}ln{10}} - \frac{2th(lg(x))}{x^{2}ln^{2}{10}} + \frac{2th^{3}(lg(x))}{x^{2}ln^{2}{10}} - \frac{1}{x^{2}ln{10}}\right)}{dx}\\=&\frac{-2th^{2}(lg(x))}{x^{3}ln{10}} + \frac{-0th^{2}(lg(x))}{x^{2}ln^{2}{10}} + \frac{2th(lg(x))(1 - th^{2}(lg(x)))}{x^{2}ln{10}ln{10}(x)} - \frac{2*-2th(lg(x))}{x^{3}ln^{2}{10}} - \frac{2*-2*0th(lg(x))}{x^{2}ln^{3}{10}} - \frac{2(1 - th^{2}(lg(x)))}{x^{2}ln^{2}{10}ln{10}(x)} + \frac{2*-2th^{3}(lg(x))}{x^{3}ln^{2}{10}} + \frac{2*-2*0th^{3}(lg(x))}{x^{2}ln^{3}{10}} + \frac{2*3th^{2}(lg(x))(1 - th^{2}(lg(x)))}{x^{2}ln^{2}{10}ln{10}(x)} - \frac{-2}{x^{3}ln{10}} - \frac{-0}{x^{2}ln^{2}{10}}\\=& - \frac{2th^{2}(lg(x))}{x^{3}ln{10}} + \frac{6th(lg(x))}{x^{3}ln^{2}{10}} - \frac{6th^{3}(lg(x))}{x^{3}ln^{2}{10}} + \frac{8th^{2}(lg(x))}{x^{3}ln^{3}{10}} - \frac{6th^{4}(lg(x))}{x^{3}ln^{3}{10}} - \frac{2}{x^{3}ln^{3}{10}} + \frac{2}{x^{3}ln{10}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( - \frac{2th^{2}(lg(x))}{x^{3}ln{10}} + \frac{6th(lg(x))}{x^{3}ln^{2}{10}} - \frac{6th^{3}(lg(x))}{x^{3}ln^{2}{10}} + \frac{8th^{2}(lg(x))}{x^{3}ln^{3}{10}} - \frac{6th^{4}(lg(x))}{x^{3}ln^{3}{10}} - \frac{2}{x^{3}ln^{3}{10}} + \frac{2}{x^{3}ln{10}}\right)}{dx}\\=& - \frac{2*-3th^{2}(lg(x))}{x^{4}ln{10}} - \frac{2*-0th^{2}(lg(x))}{x^{3}ln^{2}{10}} - \frac{2*2th(lg(x))(1 - th^{2}(lg(x)))}{x^{3}ln{10}ln{10}(x)} + \frac{6*-3th(lg(x))}{x^{4}ln^{2}{10}} + \frac{6*-2*0th(lg(x))}{x^{3}ln^{3}{10}} + \frac{6(1 - th^{2}(lg(x)))}{x^{3}ln^{2}{10}ln{10}(x)} - \frac{6*-3th^{3}(lg(x))}{x^{4}ln^{2}{10}} - \frac{6*-2*0th^{3}(lg(x))}{x^{3}ln^{3}{10}} - \frac{6*3th^{2}(lg(x))(1 - th^{2}(lg(x)))}{x^{3}ln^{2}{10}ln{10}(x)} + \frac{8*-3th^{2}(lg(x))}{x^{4}ln^{3}{10}} + \frac{8*-3*0th^{2}(lg(x))}{x^{3}ln^{4}{10}} + \frac{8*2th(lg(x))(1 - th^{2}(lg(x)))}{x^{3}ln^{3}{10}ln{10}(x)} - \frac{6*-3th^{4}(lg(x))}{x^{4}ln^{3}{10}} - \frac{6*-3*0th^{4}(lg(x))}{x^{3}ln^{4}{10}} - \frac{6*4th^{3}(lg(x))(1 - th^{2}(lg(x)))}{x^{3}ln^{3}{10}ln{10}(x)} - \frac{2*-3}{x^{4}ln^{3}{10}} - \frac{2*-3*0}{x^{3}ln^{4}{10}} + \frac{2*-3}{x^{4}ln{10}} + \frac{2*-0}{x^{3}ln^{2}{10}}\\=&\frac{6th^{2}(lg(x))}{x^{4}ln{10}} - \frac{22th(lg(x))}{x^{4}ln^{2}{10}} + \frac{22th^{3}(lg(x))}{x^{4}ln^{2}{10}} - \frac{48th^{2}(lg(x))}{x^{4}ln^{3}{10}} + \frac{36th^{4}(lg(x))}{x^{4}ln^{3}{10}} + \frac{16th(lg(x))}{x^{4}ln^{4}{10}} - \frac{40th^{3}(lg(x))}{x^{4}ln^{4}{10}} + \frac{24th^{5}(lg(x))}{x^{4}ln^{4}{10}} + \frac{12}{x^{4}ln^{3}{10}} - \frac{6}{x^{4}ln{10}}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。