数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数arcsin(ome^{g}ax + phi) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = arcsin(omaxe^{g} + phi)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( arcsin(omaxe^{g} + phi)\right)}{dx}\\=&(\frac{(omae^{g} + omaxe^{g}*0 + 0)}{((1 - (omaxe^{g} + phi)^{2})^{\frac{1}{2}})})\\=&\frac{omae^{g}}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{omae^{g}}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&(\frac{\frac{-1}{2}(-o^{2}m^{2}a^{2}*2xe^{{g}*{2}} - o^{2}m^{2}a^{2}x^{2}*2e^{g}e^{g}*0 - 2omaphie^{g} - 2omaphixe^{g}*0 + 0 + 0)}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{3}{2}}})omae^{g} + \frac{omae^{g}*0}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{1}{2}}}\\=&\frac{o^{3}m^{3}a^{3}xe^{{g}*{3}}}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{3}{2}}} + \frac{o^{2}m^{2}a^{2}phie^{{g}*{2}}}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{3}{2}}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{o^{3}m^{3}a^{3}xe^{{g}*{3}}}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{3}{2}}} + \frac{o^{2}m^{2}a^{2}phie^{{g}*{2}}}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{3}{2}}}\right)}{dx}\\=&(\frac{\frac{-3}{2}(-o^{2}m^{2}a^{2}*2xe^{{g}*{2}} - o^{2}m^{2}a^{2}x^{2}*2e^{g}e^{g}*0 - 2omaphie^{g} - 2omaphixe^{g}*0 + 0 + 0)}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{5}{2}}})o^{3}m^{3}a^{3}xe^{{g}*{3}} + \frac{o^{3}m^{3}a^{3}e^{{g}*{3}}}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{3}{2}}} + \frac{o^{3}m^{3}a^{3}x*3e^{{g}*{2}}e^{g}*0}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{3}{2}}} + (\frac{\frac{-3}{2}(-o^{2}m^{2}a^{2}*2xe^{{g}*{2}} - o^{2}m^{2}a^{2}x^{2}*2e^{g}e^{g}*0 - 2omaphie^{g} - 2omaphixe^{g}*0 + 0 + 0)}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{5}{2}}})o^{2}m^{2}a^{2}phie^{{g}*{2}} + \frac{o^{2}m^{2}a^{2}phi*2e^{g}e^{g}*0}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{3}{2}}}\\=&\frac{3o^{5}m^{5}a^{5}x^{2}e^{{g}*{5}}}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{5}{2}}} + \frac{6o^{4}m^{4}a^{4}phixe^{{g}*{4}}}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{5}{2}}} + \frac{o^{3}m^{3}a^{3}e^{{g}*{3}}}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{3}{2}}} + \frac{3o^{3}m^{3}a^{3}p^{2}h^{2}i^{2}e^{{g}*{3}}}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{5}{2}}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{3o^{5}m^{5}a^{5}x^{2}e^{{g}*{5}}}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{5}{2}}} + \frac{6o^{4}m^{4}a^{4}phixe^{{g}*{4}}}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{5}{2}}} + \frac{o^{3}m^{3}a^{3}e^{{g}*{3}}}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{3}{2}}} + \frac{3o^{3}m^{3}a^{3}p^{2}h^{2}i^{2}e^{{g}*{3}}}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{5}{2}}}\right)}{dx}\\=&3(\frac{\frac{-5}{2}(-o^{2}m^{2}a^{2}*2xe^{{g}*{2}} - o^{2}m^{2}a^{2}x^{2}*2e^{g}e^{g}*0 - 2omaphie^{g} - 2omaphixe^{g}*0 + 0 + 0)}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{7}{2}}})o^{5}m^{5}a^{5}x^{2}e^{{g}*{5}} + \frac{3o^{5}m^{5}a^{5}*2xe^{{g}*{5}}}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{5}{2}}} + \frac{3o^{5}m^{5}a^{5}x^{2}*5e^{{g}*{4}}e^{g}*0}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{5}{2}}} + 6(\frac{\frac{-5}{2}(-o^{2}m^{2}a^{2}*2xe^{{g}*{2}} - o^{2}m^{2}a^{2}x^{2}*2e^{g}e^{g}*0 - 2omaphie^{g} - 2omaphixe^{g}*0 + 0 + 0)}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{7}{2}}})o^{4}m^{4}a^{4}phixe^{{g}*{4}} + \frac{6o^{4}m^{4}a^{4}phie^{{g}*{4}}}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{5}{2}}} + \frac{6o^{4}m^{4}a^{4}phix*4e^{{g}*{3}}e^{g}*0}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{5}{2}}} + (\frac{\frac{-3}{2}(-o^{2}m^{2}a^{2}*2xe^{{g}*{2}} - o^{2}m^{2}a^{2}x^{2}*2e^{g}e^{g}*0 - 2omaphie^{g} - 2omaphixe^{g}*0 + 0 + 0)}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{5}{2}}})o^{3}m^{3}a^{3}e^{{g}*{3}} + \frac{o^{3}m^{3}a^{3}*3e^{{g}*{2}}e^{g}*0}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{3}{2}}} + 3(\frac{\frac{-5}{2}(-o^{2}m^{2}a^{2}*2xe^{{g}*{2}} - o^{2}m^{2}a^{2}x^{2}*2e^{g}e^{g}*0 - 2omaphie^{g} - 2omaphixe^{g}*0 + 0 + 0)}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{7}{2}}})o^{3}m^{3}a^{3}p^{2}h^{2}i^{2}e^{{g}*{3}} + \frac{3o^{3}m^{3}a^{3}p^{2}h^{2}i^{2}*3e^{{g}*{2}}e^{g}*0}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{5}{2}}}\\=&\frac{15o^{7}m^{7}a^{7}x^{3}e^{{g}*{7}}}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{7}{2}}} + \frac{45o^{6}m^{6}a^{6}phix^{2}e^{{g}*{6}}}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{7}{2}}} + \frac{9o^{5}m^{5}a^{5}xe^{{g}*{5}}}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{5}{2}}} + \frac{45o^{5}m^{5}a^{5}p^{2}h^{2}i^{2}xe^{{g}*{5}}}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{7}{2}}} + \frac{9o^{4}m^{4}a^{4}phie^{{g}*{4}}}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{5}{2}}} + \frac{15o^{4}m^{4}a^{4}p^{3}h^{3}i^{3}e^{{g}*{4}}}{(-o^{2}m^{2}a^{2}x^{2}e^{{g}*{2}} - 2omaphixe^{g} - p^{2}h^{2}i^{2} + 1)^{\frac{7}{2}}}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。