本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数arcsin(ax + b) + k 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( arcsin(ax + b) + k\right)}{dx}\\=&(\frac{(a + 0)}{((1 - (ax + b)^{2})^{\frac{1}{2}})}) + 0\\=&\frac{a}{(-a^{2}x^{2} - 2abx - b^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{a}{(-a^{2}x^{2} - 2abx - b^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&(\frac{\frac{-1}{2}(-a^{2}*2x - 2ab + 0 + 0)}{(-a^{2}x^{2} - 2abx - b^{2} + 1)^{\frac{3}{2}}})a + 0\\=&\frac{a^{3}x}{(-a^{2}x^{2} - 2abx - b^{2} + 1)^{\frac{3}{2}}} + \frac{a^{2}b}{(-a^{2}x^{2} - 2abx - b^{2} + 1)^{\frac{3}{2}}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{a^{3}x}{(-a^{2}x^{2} - 2abx - b^{2} + 1)^{\frac{3}{2}}} + \frac{a^{2}b}{(-a^{2}x^{2} - 2abx - b^{2} + 1)^{\frac{3}{2}}}\right)}{dx}\\=&(\frac{\frac{-3}{2}(-a^{2}*2x - 2ab + 0 + 0)}{(-a^{2}x^{2} - 2abx - b^{2} + 1)^{\frac{5}{2}}})a^{3}x + \frac{a^{3}}{(-a^{2}x^{2} - 2abx - b^{2} + 1)^{\frac{3}{2}}} + (\frac{\frac{-3}{2}(-a^{2}*2x - 2ab + 0 + 0)}{(-a^{2}x^{2} - 2abx - b^{2} + 1)^{\frac{5}{2}}})a^{2}b + 0\\=&\frac{3a^{5}x^{2}}{(-a^{2}x^{2} - 2abx - b^{2} + 1)^{\frac{5}{2}}} + \frac{6a^{4}bx}{(-a^{2}x^{2} - 2abx - b^{2} + 1)^{\frac{5}{2}}} + \frac{3a^{3}b^{2}}{(-a^{2}x^{2} - 2abx - b^{2} + 1)^{\frac{5}{2}}} + \frac{a^{3}}{(-a^{2}x^{2} - 2abx - b^{2} + 1)^{\frac{3}{2}}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{3a^{5}x^{2}}{(-a^{2}x^{2} - 2abx - b^{2} + 1)^{\frac{5}{2}}} + \frac{6a^{4}bx}{(-a^{2}x^{2} - 2abx - b^{2} + 1)^{\frac{5}{2}}} + \frac{3a^{3}b^{2}}{(-a^{2}x^{2} - 2abx - b^{2} + 1)^{\frac{5}{2}}} + \frac{a^{3}}{(-a^{2}x^{2} - 2abx - b^{2} + 1)^{\frac{3}{2}}}\right)}{dx}\\=&3(\frac{\frac{-5}{2}(-a^{2}*2x - 2ab + 0 + 0)}{(-a^{2}x^{2} - 2abx - b^{2} + 1)^{\frac{7}{2}}})a^{5}x^{2} + \frac{3a^{5}*2x}{(-a^{2}x^{2} - 2abx - b^{2} + 1)^{\frac{5}{2}}} + 6(\frac{\frac{-5}{2}(-a^{2}*2x - 2ab + 0 + 0)}{(-a^{2}x^{2} - 2abx - b^{2} + 1)^{\frac{7}{2}}})a^{4}bx + \frac{6a^{4}b}{(-a^{2}x^{2} - 2abx - b^{2} + 1)^{\frac{5}{2}}} + 3(\frac{\frac{-5}{2}(-a^{2}*2x - 2ab + 0 + 0)}{(-a^{2}x^{2} - 2abx - b^{2} + 1)^{\frac{7}{2}}})a^{3}b^{2} + 0 + (\frac{\frac{-3}{2}(-a^{2}*2x - 2ab + 0 + 0)}{(-a^{2}x^{2} - 2abx - b^{2} + 1)^{\frac{5}{2}}})a^{3} + 0\\=&\frac{15a^{7}x^{3}}{(-a^{2}x^{2} - 2abx - b^{2} + 1)^{\frac{7}{2}}} + \frac{45a^{6}bx^{2}}{(-a^{2}x^{2} - 2abx - b^{2} + 1)^{\frac{7}{2}}} + \frac{9a^{5}x}{(-a^{2}x^{2} - 2abx - b^{2} + 1)^{\frac{5}{2}}} + \frac{45a^{5}b^{2}x}{(-a^{2}x^{2} - 2abx - b^{2} + 1)^{\frac{7}{2}}} + \frac{9a^{4}b}{(-a^{2}x^{2} - 2abx - b^{2} + 1)^{\frac{5}{2}}} + \frac{15a^{4}b^{3}}{(-a^{2}x^{2} - 2abx - b^{2} + 1)^{\frac{7}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!