数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数{2}^{lg(sin(x))} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {2}^{lg(sin(x))}\right)}{dx}\\=&({2}^{lg(sin(x))}((\frac{cos(x)}{ln{10}(sin(x))})ln(2) + \frac{(lg(sin(x)))(0)}{(2)}))\\=&\frac{{2}^{lg(sin(x))}ln(2)cos(x)}{ln{10}sin(x)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{{2}^{lg(sin(x))}ln(2)cos(x)}{ln{10}sin(x)}\right)}{dx}\\=&\frac{({2}^{lg(sin(x))}((\frac{cos(x)}{ln{10}(sin(x))})ln(2) + \frac{(lg(sin(x)))(0)}{(2)}))ln(2)cos(x)}{ln{10}sin(x)} + \frac{{2}^{lg(sin(x))}*0cos(x)}{(2)ln{10}sin(x)} + \frac{{2}^{lg(sin(x))}ln(2)*-0cos(x)}{ln^{2}{10}sin(x)} + \frac{{2}^{lg(sin(x))}ln(2)*-cos(x)cos(x)}{ln{10}sin^{2}(x)} + \frac{{2}^{lg(sin(x))}ln(2)*-sin(x)}{ln{10}sin(x)}\\=&\frac{{2}^{lg(sin(x))}ln^{2}(2)cos^{2}(x)}{ln^{2}{10}sin^{2}(x)} - \frac{{2}^{lg(sin(x))}ln(2)cos^{2}(x)}{ln{10}sin^{2}(x)} - \frac{{2}^{lg(sin(x))}ln(2)}{ln{10}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{{2}^{lg(sin(x))}ln^{2}(2)cos^{2}(x)}{ln^{2}{10}sin^{2}(x)} - \frac{{2}^{lg(sin(x))}ln(2)cos^{2}(x)}{ln{10}sin^{2}(x)} - \frac{{2}^{lg(sin(x))}ln(2)}{ln{10}}\right)}{dx}\\=&\frac{({2}^{lg(sin(x))}((\frac{cos(x)}{ln{10}(sin(x))})ln(2) + \frac{(lg(sin(x)))(0)}{(2)}))ln^{2}(2)cos^{2}(x)}{ln^{2}{10}sin^{2}(x)} + \frac{{2}^{lg(sin(x))}*2ln(2)*0cos^{2}(x)}{(2)ln^{2}{10}sin^{2}(x)} + \frac{{2}^{lg(sin(x))}ln^{2}(2)*-2*0cos^{2}(x)}{ln^{3}{10}sin^{2}(x)} + \frac{{2}^{lg(sin(x))}ln^{2}(2)*-2cos(x)cos^{2}(x)}{ln^{2}{10}sin^{3}(x)} + \frac{{2}^{lg(sin(x))}ln^{2}(2)*-2cos(x)sin(x)}{ln^{2}{10}sin^{2}(x)} - \frac{({2}^{lg(sin(x))}((\frac{cos(x)}{ln{10}(sin(x))})ln(2) + \frac{(lg(sin(x)))(0)}{(2)}))ln(2)cos^{2}(x)}{ln{10}sin^{2}(x)} - \frac{{2}^{lg(sin(x))}*0cos^{2}(x)}{(2)ln{10}sin^{2}(x)} - \frac{{2}^{lg(sin(x))}ln(2)*-0cos^{2}(x)}{ln^{2}{10}sin^{2}(x)} - \frac{{2}^{lg(sin(x))}ln(2)*-2cos(x)cos^{2}(x)}{ln{10}sin^{3}(x)} - \frac{{2}^{lg(sin(x))}ln(2)*-2cos(x)sin(x)}{ln{10}sin^{2}(x)} - \frac{({2}^{lg(sin(x))}((\frac{cos(x)}{ln{10}(sin(x))})ln(2) + \frac{(lg(sin(x)))(0)}{(2)}))ln(2)}{ln{10}} - \frac{{2}^{lg(sin(x))}*0}{(2)ln{10}} - \frac{{2}^{lg(sin(x))}ln(2)*-0}{ln^{2}{10}}\\=&\frac{{2}^{lg(sin(x))}ln^{3}(2)cos^{3}(x)}{ln^{3}{10}sin^{3}(x)} - \frac{3 * {2}^{lg(sin(x))}ln^{2}(2)cos^{3}(x)}{ln^{2}{10}sin^{3}(x)} + \frac{2 * {2}^{lg(sin(x))}ln(2)cos^{3}(x)}{ln{10}sin^{3}(x)} - \frac{3 * {2}^{lg(sin(x))}ln^{2}(2)cos(x)}{ln^{2}{10}sin(x)} + \frac{2 * {2}^{lg(sin(x))}ln(2)cos(x)}{ln{10}sin(x)}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{{2}^{lg(sin(x))}ln^{3}(2)cos^{3}(x)}{ln^{3}{10}sin^{3}(x)} - \frac{3 * {2}^{lg(sin(x))}ln^{2}(2)cos^{3}(x)}{ln^{2}{10}sin^{3}(x)} + \frac{2 * {2}^{lg(sin(x))}ln(2)cos^{3}(x)}{ln{10}sin^{3}(x)} - \frac{3 * {2}^{lg(sin(x))}ln^{2}(2)cos(x)}{ln^{2}{10}sin(x)} + \frac{2 * {2}^{lg(sin(x))}ln(2)cos(x)}{ln{10}sin(x)}\right)}{dx}\\=&\frac{({2}^{lg(sin(x))}((\frac{cos(x)}{ln{10}(sin(x))})ln(2) + \frac{(lg(sin(x)))(0)}{(2)}))ln^{3}(2)cos^{3}(x)}{ln^{3}{10}sin^{3}(x)} + \frac{{2}^{lg(sin(x))}*3ln^{2}(2)*0cos^{3}(x)}{(2)ln^{3}{10}sin^{3}(x)} + \frac{{2}^{lg(sin(x))}ln^{3}(2)*-3*0cos^{3}(x)}{ln^{4}{10}sin^{3}(x)} + \frac{{2}^{lg(sin(x))}ln^{3}(2)*-3cos(x)cos^{3}(x)}{ln^{3}{10}sin^{4}(x)} + \frac{{2}^{lg(sin(x))}ln^{3}(2)*-3cos^{2}(x)sin(x)}{ln^{3}{10}sin^{3}(x)} - \frac{3({2}^{lg(sin(x))}((\frac{cos(x)}{ln{10}(sin(x))})ln(2) + \frac{(lg(sin(x)))(0)}{(2)}))ln^{2}(2)cos^{3}(x)}{ln^{2}{10}sin^{3}(x)} - \frac{3 * {2}^{lg(sin(x))}*2ln(2)*0cos^{3}(x)}{(2)ln^{2}{10}sin^{3}(x)} - \frac{3 * {2}^{lg(sin(x))}ln^{2}(2)*-2*0cos^{3}(x)}{ln^{3}{10}sin^{3}(x)} - \frac{3 * {2}^{lg(sin(x))}ln^{2}(2)*-3cos(x)cos^{3}(x)}{ln^{2}{10}sin^{4}(x)} - \frac{3 * {2}^{lg(sin(x))}ln^{2}(2)*-3cos^{2}(x)sin(x)}{ln^{2}{10}sin^{3}(x)} + \frac{2({2}^{lg(sin(x))}((\frac{cos(x)}{ln{10}(sin(x))})ln(2) + \frac{(lg(sin(x)))(0)}{(2)}))ln(2)cos^{3}(x)}{ln{10}sin^{3}(x)} + \frac{2 * {2}^{lg(sin(x))}*0cos^{3}(x)}{(2)ln{10}sin^{3}(x)} + \frac{2 * {2}^{lg(sin(x))}ln(2)*-0cos^{3}(x)}{ln^{2}{10}sin^{3}(x)} + \frac{2 * {2}^{lg(sin(x))}ln(2)*-3cos(x)cos^{3}(x)}{ln{10}sin^{4}(x)} + \frac{2 * {2}^{lg(sin(x))}ln(2)*-3cos^{2}(x)sin(x)}{ln{10}sin^{3}(x)} - \frac{3({2}^{lg(sin(x))}((\frac{cos(x)}{ln{10}(sin(x))})ln(2) + \frac{(lg(sin(x)))(0)}{(2)}))ln^{2}(2)cos(x)}{ln^{2}{10}sin(x)} - \frac{3 * {2}^{lg(sin(x))}*2ln(2)*0cos(x)}{(2)ln^{2}{10}sin(x)} - \frac{3 * {2}^{lg(sin(x))}ln^{2}(2)*-2*0cos(x)}{ln^{3}{10}sin(x)} - \frac{3 * {2}^{lg(sin(x))}ln^{2}(2)*-cos(x)cos(x)}{ln^{2}{10}sin^{2}(x)} - \frac{3 * {2}^{lg(sin(x))}ln^{2}(2)*-sin(x)}{ln^{2}{10}sin(x)} + \frac{2({2}^{lg(sin(x))}((\frac{cos(x)}{ln{10}(sin(x))})ln(2) + \frac{(lg(sin(x)))(0)}{(2)}))ln(2)cos(x)}{ln{10}sin(x)} + \frac{2 * {2}^{lg(sin(x))}*0cos(x)}{(2)ln{10}sin(x)} + \frac{2 * {2}^{lg(sin(x))}ln(2)*-0cos(x)}{ln^{2}{10}sin(x)} + \frac{2 * {2}^{lg(sin(x))}ln(2)*-cos(x)cos(x)}{ln{10}sin^{2}(x)} + \frac{2 * {2}^{lg(sin(x))}ln(2)*-sin(x)}{ln{10}sin(x)}\\=&\frac{{2}^{lg(sin(x))}ln^{4}(2)cos^{4}(x)}{ln^{4}{10}sin^{4}(x)} - \frac{6 * {2}^{lg(sin(x))}ln^{3}(2)cos^{4}(x)}{ln^{3}{10}sin^{4}(x)} + \frac{11 * {2}^{lg(sin(x))}ln^{2}(2)cos^{4}(x)}{ln^{2}{10}sin^{4}(x)} - \frac{6 * {2}^{lg(sin(x))}ln^{3}(2)cos^{2}(x)}{ln^{3}{10}sin^{2}(x)} - \frac{6 * {2}^{lg(sin(x))}ln(2)cos^{4}(x)}{ln{10}sin^{4}(x)} + \frac{14 * {2}^{lg(sin(x))}ln^{2}(2)cos^{2}(x)}{ln^{2}{10}sin^{2}(x)} - \frac{8 * {2}^{lg(sin(x))}ln(2)cos^{2}(x)}{ln{10}sin^{2}(x)} + \frac{3 * {2}^{lg(sin(x))}ln^{2}(2)}{ln^{2}{10}} - \frac{2 * {2}^{lg(sin(x))}ln(2)}{ln{10}}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。