本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(sin(x))}^{6} + {(cos(x))}^{6} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sin^{6}(x) + cos^{6}(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sin^{6}(x) + cos^{6}(x)\right)}{dx}\\=&6sin^{5}(x)cos(x) + -6cos^{5}(x)sin(x)\\=&6sin^{5}(x)cos(x) - 6sin(x)cos^{5}(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 6sin^{5}(x)cos(x) - 6sin(x)cos^{5}(x)\right)}{dx}\\=&6*5sin^{4}(x)cos(x)cos(x) + 6sin^{5}(x)*-sin(x) - 6cos(x)cos^{5}(x) - 6sin(x)*-5cos^{4}(x)sin(x)\\=&30sin^{4}(x)cos^{2}(x) + 30sin^{2}(x)cos^{4}(x) - 6cos^{6}(x) - 6sin^{6}(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 30sin^{4}(x)cos^{2}(x) + 30sin^{2}(x)cos^{4}(x) - 6cos^{6}(x) - 6sin^{6}(x)\right)}{dx}\\=&30*4sin^{3}(x)cos(x)cos^{2}(x) + 30sin^{4}(x)*-2cos(x)sin(x) + 30*2sin(x)cos(x)cos^{4}(x) + 30sin^{2}(x)*-4cos^{3}(x)sin(x) - 6*-6cos^{5}(x)sin(x) - 6*6sin^{5}(x)cos(x)\\=&-96sin^{5}(x)cos(x) + 96sin(x)cos^{5}(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( -96sin^{5}(x)cos(x) + 96sin(x)cos^{5}(x)\right)}{dx}\\=&-96*5sin^{4}(x)cos(x)cos(x) - 96sin^{5}(x)*-sin(x) + 96cos(x)cos^{5}(x) + 96sin(x)*-5cos^{4}(x)sin(x)\\=&-480sin^{4}(x)cos^{2}(x) - 480sin^{2}(x)cos^{4}(x) + 96cos^{6}(x) + 96sin^{6}(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!