本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数log_{e^{x}}^{x} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( log_{e^{x}}^{x}\right)}{dx}\\=&(\frac{(\frac{(1)}{(x)} - \frac{(e^{x})log_{e^{x}}^{x}}{(e^{x})})}{(ln(e^{x}))})\\=&\frac{1}{xln(e^{x})} - \frac{log_{e^{x}}^{x}}{ln(e^{x})}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{1}{xln(e^{x})} - \frac{log_{e^{x}}^{x}}{ln(e^{x})}\right)}{dx}\\=&\frac{-1}{x^{2}ln(e^{x})} + \frac{-e^{x}}{xln^{2}(e^{x})(e^{x})} - \frac{(\frac{(\frac{(1)}{(x)} - \frac{(e^{x})log_{e^{x}}^{x}}{(e^{x})})}{(ln(e^{x}))})}{ln(e^{x})} - \frac{log_{e^{x}}^{x}*-e^{x}}{ln^{2}(e^{x})(e^{x})}\\=&\frac{-1}{x^{2}ln(e^{x})} - \frac{2}{xln^{2}(e^{x})} + \frac{2log_{e^{x}}^{x}}{ln^{2}(e^{x})}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-1}{x^{2}ln(e^{x})} - \frac{2}{xln^{2}(e^{x})} + \frac{2log_{e^{x}}^{x}}{ln^{2}(e^{x})}\right)}{dx}\\=&\frac{--2}{x^{3}ln(e^{x})} - \frac{-e^{x}}{x^{2}ln^{2}(e^{x})(e^{x})} - \frac{2*-1}{x^{2}ln^{2}(e^{x})} - \frac{2*-2e^{x}}{xln^{3}(e^{x})(e^{x})} + \frac{2(\frac{(\frac{(1)}{(x)} - \frac{(e^{x})log_{e^{x}}^{x}}{(e^{x})})}{(ln(e^{x}))})}{ln^{2}(e^{x})} + \frac{2log_{e^{x}}^{x}*-2e^{x}}{ln^{3}(e^{x})(e^{x})}\\=&\frac{2}{x^{3}ln(e^{x})} + \frac{3}{x^{2}ln^{2}(e^{x})} + \frac{6}{xln^{3}(e^{x})} - \frac{6log_{e^{x}}^{x}}{ln^{3}(e^{x})}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{2}{x^{3}ln(e^{x})} + \frac{3}{x^{2}ln^{2}(e^{x})} + \frac{6}{xln^{3}(e^{x})} - \frac{6log_{e^{x}}^{x}}{ln^{3}(e^{x})}\right)}{dx}\\=&\frac{2*-3}{x^{4}ln(e^{x})} + \frac{2*-e^{x}}{x^{3}ln^{2}(e^{x})(e^{x})} + \frac{3*-2}{x^{3}ln^{2}(e^{x})} + \frac{3*-2e^{x}}{x^{2}ln^{3}(e^{x})(e^{x})} + \frac{6*-1}{x^{2}ln^{3}(e^{x})} + \frac{6*-3e^{x}}{xln^{4}(e^{x})(e^{x})} - \frac{6(\frac{(\frac{(1)}{(x)} - \frac{(e^{x})log_{e^{x}}^{x}}{(e^{x})})}{(ln(e^{x}))})}{ln^{3}(e^{x})} - \frac{6log_{e^{x}}^{x}*-3e^{x}}{ln^{4}(e^{x})(e^{x})}\\=&\frac{-6}{x^{4}ln(e^{x})} - \frac{8}{x^{3}ln^{2}(e^{x})} - \frac{12}{x^{2}ln^{3}(e^{x})} - \frac{24}{xln^{4}(e^{x})} + \frac{24log_{e^{x}}^{x}}{ln^{4}(e^{x})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!