数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数{x}^{e^{x}} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {x}^{e^{x}}\right)}{dx}\\=&({x}^{e^{x}}((e^{x})ln(x) + \frac{(e^{x})(1)}{(x)}))\\=&{x}^{e^{x}}e^{x}ln(x) + \frac{{x}^{e^{x}}e^{x}}{x}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( {x}^{e^{x}}e^{x}ln(x) + \frac{{x}^{e^{x}}e^{x}}{x}\right)}{dx}\\=&({x}^{e^{x}}((e^{x})ln(x) + \frac{(e^{x})(1)}{(x)}))e^{x}ln(x) + {x}^{e^{x}}e^{x}ln(x) + \frac{{x}^{e^{x}}e^{x}}{(x)} + \frac{-{x}^{e^{x}}e^{x}}{x^{2}} + \frac{({x}^{e^{x}}((e^{x})ln(x) + \frac{(e^{x})(1)}{(x)}))e^{x}}{x} + \frac{{x}^{e^{x}}e^{x}}{x}\\=&{x}^{e^{x}}e^{{x}*{2}}ln^{2}(x) + \frac{2{x}^{e^{x}}e^{{x}*{2}}ln(x)}{x} + {x}^{e^{x}}e^{x}ln(x) + \frac{2{x}^{e^{x}}e^{x}}{x} - \frac{{x}^{e^{x}}e^{x}}{x^{2}} + \frac{{x}^{e^{x}}e^{{x}*{2}}}{x^{2}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( {x}^{e^{x}}e^{{x}*{2}}ln^{2}(x) + \frac{2{x}^{e^{x}}e^{{x}*{2}}ln(x)}{x} + {x}^{e^{x}}e^{x}ln(x) + \frac{2{x}^{e^{x}}e^{x}}{x} - \frac{{x}^{e^{x}}e^{x}}{x^{2}} + \frac{{x}^{e^{x}}e^{{x}*{2}}}{x^{2}}\right)}{dx}\\=&({x}^{e^{x}}((e^{x})ln(x) + \frac{(e^{x})(1)}{(x)}))e^{{x}*{2}}ln^{2}(x) + {x}^{e^{x}}*2e^{x}e^{x}ln^{2}(x) + \frac{{x}^{e^{x}}e^{{x}*{2}}*2ln(x)}{(x)} + \frac{2*-{x}^{e^{x}}e^{{x}*{2}}ln(x)}{x^{2}} + \frac{2({x}^{e^{x}}((e^{x})ln(x) + \frac{(e^{x})(1)}{(x)}))e^{{x}*{2}}ln(x)}{x} + \frac{2{x}^{e^{x}}*2e^{x}e^{x}ln(x)}{x} + \frac{2{x}^{e^{x}}e^{{x}*{2}}}{x(x)} + ({x}^{e^{x}}((e^{x})ln(x) + \frac{(e^{x})(1)}{(x)}))e^{x}ln(x) + {x}^{e^{x}}e^{x}ln(x) + \frac{{x}^{e^{x}}e^{x}}{(x)} + \frac{2*-{x}^{e^{x}}e^{x}}{x^{2}} + \frac{2({x}^{e^{x}}((e^{x})ln(x) + \frac{(e^{x})(1)}{(x)}))e^{x}}{x} + \frac{2{x}^{e^{x}}e^{x}}{x} - \frac{-2{x}^{e^{x}}e^{x}}{x^{3}} - \frac{({x}^{e^{x}}((e^{x})ln(x) + \frac{(e^{x})(1)}{(x)}))e^{x}}{x^{2}} - \frac{{x}^{e^{x}}e^{x}}{x^{2}} + \frac{-2{x}^{e^{x}}e^{{x}*{2}}}{x^{3}} + \frac{({x}^{e^{x}}((e^{x})ln(x) + \frac{(e^{x})(1)}{(x)}))e^{{x}*{2}}}{x^{2}} + \frac{{x}^{e^{x}}*2e^{x}e^{x}}{x^{2}}\\=&{x}^{e^{x}}e^{{x}*{3}}ln^{3}(x) + \frac{3{x}^{e^{x}}e^{{x}*{3}}ln^{2}(x)}{x} + 3{x}^{e^{x}}e^{{x}*{2}}ln^{2}(x) + \frac{9{x}^{e^{x}}e^{{x}*{2}}ln(x)}{x} - \frac{3{x}^{e^{x}}e^{{x}*{2}}ln(x)}{x^{2}} + \frac{3{x}^{e^{x}}e^{{x}*{3}}ln(x)}{x^{2}} + \frac{6{x}^{e^{x}}e^{{x}*{2}}}{x^{2}} + {x}^{e^{x}}e^{x}ln(x) - \frac{3{x}^{e^{x}}e^{x}}{x^{2}} + \frac{3{x}^{e^{x}}e^{x}}{x} + \frac{2{x}^{e^{x}}e^{x}}{x^{3}} - \frac{3{x}^{e^{x}}e^{{x}*{2}}}{x^{3}} + \frac{{x}^{e^{x}}e^{{x}*{3}}}{x^{3}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( {x}^{e^{x}}e^{{x}*{3}}ln^{3}(x) + \frac{3{x}^{e^{x}}e^{{x}*{3}}ln^{2}(x)}{x} + 3{x}^{e^{x}}e^{{x}*{2}}ln^{2}(x) + \frac{9{x}^{e^{x}}e^{{x}*{2}}ln(x)}{x} - \frac{3{x}^{e^{x}}e^{{x}*{2}}ln(x)}{x^{2}} + \frac{3{x}^{e^{x}}e^{{x}*{3}}ln(x)}{x^{2}} + \frac{6{x}^{e^{x}}e^{{x}*{2}}}{x^{2}} + {x}^{e^{x}}e^{x}ln(x) - \frac{3{x}^{e^{x}}e^{x}}{x^{2}} + \frac{3{x}^{e^{x}}e^{x}}{x} + \frac{2{x}^{e^{x}}e^{x}}{x^{3}} - \frac{3{x}^{e^{x}}e^{{x}*{2}}}{x^{3}} + \frac{{x}^{e^{x}}e^{{x}*{3}}}{x^{3}}\right)}{dx}\\=&({x}^{e^{x}}((e^{x})ln(x) + \frac{(e^{x})(1)}{(x)}))e^{{x}*{3}}ln^{3}(x) + {x}^{e^{x}}*3e^{{x}*{2}}e^{x}ln^{3}(x) + \frac{{x}^{e^{x}}e^{{x}*{3}}*3ln^{2}(x)}{(x)} + \frac{3*-{x}^{e^{x}}e^{{x}*{3}}ln^{2}(x)}{x^{2}} + \frac{3({x}^{e^{x}}((e^{x})ln(x) + \frac{(e^{x})(1)}{(x)}))e^{{x}*{3}}ln^{2}(x)}{x} + \frac{3{x}^{e^{x}}*3e^{{x}*{2}}e^{x}ln^{2}(x)}{x} + \frac{3{x}^{e^{x}}e^{{x}*{3}}*2ln(x)}{x(x)} + 3({x}^{e^{x}}((e^{x})ln(x) + \frac{(e^{x})(1)}{(x)}))e^{{x}*{2}}ln^{2}(x) + 3{x}^{e^{x}}*2e^{x}e^{x}ln^{2}(x) + \frac{3{x}^{e^{x}}e^{{x}*{2}}*2ln(x)}{(x)} + \frac{9*-{x}^{e^{x}}e^{{x}*{2}}ln(x)}{x^{2}} + \frac{9({x}^{e^{x}}((e^{x})ln(x) + \frac{(e^{x})(1)}{(x)}))e^{{x}*{2}}ln(x)}{x} + \frac{9{x}^{e^{x}}*2e^{x}e^{x}ln(x)}{x} + \frac{9{x}^{e^{x}}e^{{x}*{2}}}{x(x)} - \frac{3*-2{x}^{e^{x}}e^{{x}*{2}}ln(x)}{x^{3}} - \frac{3({x}^{e^{x}}((e^{x})ln(x) + \frac{(e^{x})(1)}{(x)}))e^{{x}*{2}}ln(x)}{x^{2}} - \frac{3{x}^{e^{x}}*2e^{x}e^{x}ln(x)}{x^{2}} - \frac{3{x}^{e^{x}}e^{{x}*{2}}}{x^{2}(x)} + \frac{3*-2{x}^{e^{x}}e^{{x}*{3}}ln(x)}{x^{3}} + \frac{3({x}^{e^{x}}((e^{x})ln(x) + \frac{(e^{x})(1)}{(x)}))e^{{x}*{3}}ln(x)}{x^{2}} + \frac{3{x}^{e^{x}}*3e^{{x}*{2}}e^{x}ln(x)}{x^{2}} + \frac{3{x}^{e^{x}}e^{{x}*{3}}}{x^{2}(x)} + \frac{6*-2{x}^{e^{x}}e^{{x}*{2}}}{x^{3}} + \frac{6({x}^{e^{x}}((e^{x})ln(x) + \frac{(e^{x})(1)}{(x)}))e^{{x}*{2}}}{x^{2}} + \frac{6{x}^{e^{x}}*2e^{x}e^{x}}{x^{2}} + ({x}^{e^{x}}((e^{x})ln(x) + \frac{(e^{x})(1)}{(x)}))e^{x}ln(x) + {x}^{e^{x}}e^{x}ln(x) + \frac{{x}^{e^{x}}e^{x}}{(x)} - \frac{3*-2{x}^{e^{x}}e^{x}}{x^{3}} - \frac{3({x}^{e^{x}}((e^{x})ln(x) + \frac{(e^{x})(1)}{(x)}))e^{x}}{x^{2}} - \frac{3{x}^{e^{x}}e^{x}}{x^{2}} + \frac{3*-{x}^{e^{x}}e^{x}}{x^{2}} + \frac{3({x}^{e^{x}}((e^{x})ln(x) + \frac{(e^{x})(1)}{(x)}))e^{x}}{x} + \frac{3{x}^{e^{x}}e^{x}}{x} + \frac{2*-3{x}^{e^{x}}e^{x}}{x^{4}} + \frac{2({x}^{e^{x}}((e^{x})ln(x) + \frac{(e^{x})(1)}{(x)}))e^{x}}{x^{3}} + \frac{2{x}^{e^{x}}e^{x}}{x^{3}} - \frac{3*-3{x}^{e^{x}}e^{{x}*{2}}}{x^{4}} - \frac{3({x}^{e^{x}}((e^{x})ln(x) + \frac{(e^{x})(1)}{(x)}))e^{{x}*{2}}}{x^{3}} - \frac{3{x}^{e^{x}}*2e^{x}e^{x}}{x^{3}} + \frac{-3{x}^{e^{x}}e^{{x}*{3}}}{x^{4}} + \frac{({x}^{e^{x}}((e^{x})ln(x) + \frac{(e^{x})(1)}{(x)}))e^{{x}*{3}}}{x^{3}} + \frac{{x}^{e^{x}}*3e^{{x}*{2}}e^{x}}{x^{3}}\\=&{x}^{e^{x}}e^{{x}*{4}}ln^{4}(x) + \frac{4{x}^{e^{x}}e^{{x}*{4}}ln^{3}(x)}{x} + 6{x}^{e^{x}}e^{{x}*{3}}ln^{3}(x) + \frac{24{x}^{e^{x}}e^{{x}*{3}}ln^{2}(x)}{x} - \frac{6{x}^{e^{x}}e^{{x}*{3}}ln^{2}(x)}{x^{2}} + \frac{6{x}^{e^{x}}e^{{x}*{4}}ln^{2}(x)}{x^{2}} + \frac{30{x}^{e^{x}}e^{{x}*{3}}ln(x)}{x^{2}} + 7{x}^{e^{x}}e^{{x}*{2}}ln^{2}(x) + \frac{28{x}^{e^{x}}e^{{x}*{2}}ln(x)}{x} - \frac{18{x}^{e^{x}}e^{{x}*{2}}ln(x)}{x^{2}} + \frac{8{x}^{e^{x}}e^{{x}*{2}}ln(x)}{x^{3}} - \frac{12{x}^{e^{x}}e^{{x}*{3}}ln(x)}{x^{3}} + \frac{4{x}^{e^{x}}e^{{x}*{4}}ln(x)}{x^{3}} + \frac{24{x}^{e^{x}}e^{{x}*{2}}}{x^{2}} - \frac{24{x}^{e^{x}}e^{{x}*{2}}}{x^{3}} + \frac{12{x}^{e^{x}}e^{{x}*{3}}}{x^{3}} + {x}^{e^{x}}e^{x}ln(x) + \frac{8{x}^{e^{x}}e^{x}}{x^{3}} - \frac{6{x}^{e^{x}}e^{x}}{x^{2}} + \frac{4{x}^{e^{x}}e^{x}}{x} - \frac{6{x}^{e^{x}}e^{x}}{x^{4}} + \frac{11{x}^{e^{x}}e^{{x}*{2}}}{x^{4}} - \frac{6{x}^{e^{x}}e^{{x}*{3}}}{x^{4}} + \frac{{x}^{e^{x}}e^{{x}*{4}}}{x^{4}}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。