数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 3 个题目:每一题对 x 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/3】求函数log_{x}^{sin(x)} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( log_{x}^{sin(x)}\right)}{dx}\\=&(\frac{(\frac{(cos(x))}{(sin(x))} - \frac{(1)log_{x}^{sin(x)}}{(x)})}{(ln(x))})\\=&\frac{cos(x)}{ln(x)sin(x)} - \frac{log_{x}^{sin(x)}}{xln(x)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{cos(x)}{ln(x)sin(x)} - \frac{log_{x}^{sin(x)}}{xln(x)}\right)}{dx}\\=&\frac{-cos(x)}{ln^{2}(x)(x)sin(x)} + \frac{-cos(x)cos(x)}{ln(x)sin^{2}(x)} + \frac{-sin(x)}{ln(x)sin(x)} - \frac{-log_{x}^{sin(x)}}{x^{2}ln(x)} - \frac{(\frac{(\frac{(cos(x))}{(sin(x))} - \frac{(1)log_{x}^{sin(x)}}{(x)})}{(ln(x))})}{xln(x)} - \frac{log_{x}^{sin(x)}*-1}{xln^{2}(x)(x)}\\=&\frac{-2cos(x)}{xln^{2}(x)sin(x)} - \frac{cos^{2}(x)}{ln(x)sin^{2}(x)} - \frac{1}{ln(x)} + \frac{log_{x}^{sin(x)}}{x^{2}ln(x)} + \frac{2log_{x}^{sin(x)}}{x^{2}ln^{2}(x)}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-2cos(x)}{xln^{2}(x)sin(x)} - \frac{cos^{2}(x)}{ln(x)sin^{2}(x)} - \frac{1}{ln(x)} + \frac{log_{x}^{sin(x)}}{x^{2}ln(x)} + \frac{2log_{x}^{sin(x)}}{x^{2}ln^{2}(x)}\right)}{dx}\\=&\frac{-2*-cos(x)}{x^{2}ln^{2}(x)sin(x)} - \frac{2*-2cos(x)}{xln^{3}(x)(x)sin(x)} - \frac{2*-cos(x)cos(x)}{xln^{2}(x)sin^{2}(x)} - \frac{2*-sin(x)}{xln^{2}(x)sin(x)} - \frac{-cos^{2}(x)}{ln^{2}(x)(x)sin^{2}(x)} - \frac{-2cos(x)cos^{2}(x)}{ln(x)sin^{3}(x)} - \frac{-2cos(x)sin(x)}{ln(x)sin^{2}(x)} - \frac{-1}{ln^{2}(x)(x)} + \frac{-2log_{x}^{sin(x)}}{x^{3}ln(x)} + \frac{(\frac{(\frac{(cos(x))}{(sin(x))} - \frac{(1)log_{x}^{sin(x)}}{(x)})}{(ln(x))})}{x^{2}ln(x)} + \frac{log_{x}^{sin(x)}*-1}{x^{2}ln^{2}(x)(x)} + \frac{2*-2log_{x}^{sin(x)}}{x^{3}ln^{2}(x)} + \frac{2(\frac{(\frac{(cos(x))}{(sin(x))} - \frac{(1)log_{x}^{sin(x)}}{(x)})}{(ln(x))})}{x^{2}ln^{2}(x)} + \frac{2log_{x}^{sin(x)}*-2}{x^{2}ln^{3}(x)(x)}\\=&\frac{3cos(x)}{x^{2}ln^{2}(x)sin(x)} + \frac{6cos(x)}{x^{2}ln^{3}(x)sin(x)} + \frac{3cos^{2}(x)}{xln^{2}(x)sin^{2}(x)} + \frac{3}{xln^{2}(x)} + \frac{2cos^{3}(x)}{ln(x)sin^{3}(x)} + \frac{2cos(x)}{ln(x)sin(x)} - \frac{2log_{x}^{sin(x)}}{x^{3}ln(x)} - \frac{6log_{x}^{sin(x)}}{x^{3}ln^{2}(x)} - \frac{6log_{x}^{sin(x)}}{x^{3}ln^{3}(x)}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{3cos(x)}{x^{2}ln^{2}(x)sin(x)} + \frac{6cos(x)}{x^{2}ln^{3}(x)sin(x)} + \frac{3cos^{2}(x)}{xln^{2}(x)sin^{2}(x)} + \frac{3}{xln^{2}(x)} + \frac{2cos^{3}(x)}{ln(x)sin^{3}(x)} + \frac{2cos(x)}{ln(x)sin(x)} - \frac{2log_{x}^{sin(x)}}{x^{3}ln(x)} - \frac{6log_{x}^{sin(x)}}{x^{3}ln^{2}(x)} - \frac{6log_{x}^{sin(x)}}{x^{3}ln^{3}(x)}\right)}{dx}\\=&\frac{3*-2cos(x)}{x^{3}ln^{2}(x)sin(x)} + \frac{3*-2cos(x)}{x^{2}ln^{3}(x)(x)sin(x)} + \frac{3*-cos(x)cos(x)}{x^{2}ln^{2}(x)sin^{2}(x)} + \frac{3*-sin(x)}{x^{2}ln^{2}(x)sin(x)} + \frac{6*-2cos(x)}{x^{3}ln^{3}(x)sin(x)} + \frac{6*-3cos(x)}{x^{2}ln^{4}(x)(x)sin(x)} + \frac{6*-cos(x)cos(x)}{x^{2}ln^{3}(x)sin^{2}(x)} + \frac{6*-sin(x)}{x^{2}ln^{3}(x)sin(x)} + \frac{3*-cos^{2}(x)}{x^{2}ln^{2}(x)sin^{2}(x)} + \frac{3*-2cos^{2}(x)}{xln^{3}(x)(x)sin^{2}(x)} + \frac{3*-2cos(x)cos^{2}(x)}{xln^{2}(x)sin^{3}(x)} + \frac{3*-2cos(x)sin(x)}{xln^{2}(x)sin^{2}(x)} + \frac{3*-1}{x^{2}ln^{2}(x)} + \frac{3*-2}{xln^{3}(x)(x)} + \frac{2*-cos^{3}(x)}{ln^{2}(x)(x)sin^{3}(x)} + \frac{2*-3cos(x)cos^{3}(x)}{ln(x)sin^{4}(x)} + \frac{2*-3cos^{2}(x)sin(x)}{ln(x)sin^{3}(x)} + \frac{2*-cos(x)}{ln^{2}(x)(x)sin(x)} + \frac{2*-cos(x)cos(x)}{ln(x)sin^{2}(x)} + \frac{2*-sin(x)}{ln(x)sin(x)} - \frac{2*-3log_{x}^{sin(x)}}{x^{4}ln(x)} - \frac{2(\frac{(\frac{(cos(x))}{(sin(x))} - \frac{(1)log_{x}^{sin(x)}}{(x)})}{(ln(x))})}{x^{3}ln(x)} - \frac{2log_{x}^{sin(x)}*-1}{x^{3}ln^{2}(x)(x)} - \frac{6*-3log_{x}^{sin(x)}}{x^{4}ln^{2}(x)} - \frac{6(\frac{(\frac{(cos(x))}{(sin(x))} - \frac{(1)log_{x}^{sin(x)}}{(x)})}{(ln(x))})}{x^{3}ln^{2}(x)} - \frac{6log_{x}^{sin(x)}*-2}{x^{3}ln^{3}(x)(x)} - \frac{6*-3log_{x}^{sin(x)}}{x^{4}ln^{3}(x)} - \frac{6(\frac{(\frac{(cos(x))}{(sin(x))} - \frac{(1)log_{x}^{sin(x)}}{(x)})}{(ln(x))})}{x^{3}ln^{3}(x)} - \frac{6log_{x}^{sin(x)}*-3}{x^{3}ln^{4}(x)(x)}\\=&\frac{-8cos(x)}{x^{3}ln^{2}(x)sin(x)} - \frac{24cos(x)}{x^{3}ln^{3}(x)sin(x)} - \frac{6cos^{2}(x)}{x^{2}ln^{2}(x)sin^{2}(x)} - \frac{8cos(x)}{xln^{2}(x)sin(x)} - \frac{24cos(x)}{x^{3}ln^{4}(x)sin(x)} - \frac{12cos^{2}(x)}{x^{2}ln^{3}(x)sin^{2}(x)} - \frac{8cos^{3}(x)}{xln^{2}(x)sin^{3}(x)} - \frac{12}{x^{2}ln^{3}(x)} - \frac{6}{x^{2}ln^{2}(x)} - \frac{6cos^{4}(x)}{ln(x)sin^{4}(x)} - \frac{8cos^{2}(x)}{ln(x)sin^{2}(x)} - \frac{2}{ln(x)} + \frac{6log_{x}^{sin(x)}}{x^{4}ln(x)} + \frac{22log_{x}^{sin(x)}}{x^{4}ln^{2}(x)} + \frac{36log_{x}^{sin(x)}}{x^{4}ln^{3}(x)} + \frac{24log_{x}^{sin(x)}}{x^{4}ln^{4}(x)}\\ \end{split}\end{equation} \]

\[ \begin{equation}\begin{split}【2/3】求函数log_{x}^{cos(x)} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( log_{x}^{cos(x)}\right)}{dx}\\=&(\frac{(\frac{(-sin(x))}{(cos(x))} - \frac{(1)log_{x}^{cos(x)}}{(x)})}{(ln(x))})\\=&\frac{-sin(x)}{ln(x)cos(x)} - \frac{log_{x}^{cos(x)}}{xln(x)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-sin(x)}{ln(x)cos(x)} - \frac{log_{x}^{cos(x)}}{xln(x)}\right)}{dx}\\=&\frac{--sin(x)}{ln^{2}(x)(x)cos(x)} - \frac{cos(x)}{ln(x)cos(x)} - \frac{sin(x)sin(x)}{ln(x)cos^{2}(x)} - \frac{-log_{x}^{cos(x)}}{x^{2}ln(x)} - \frac{(\frac{(\frac{(-sin(x))}{(cos(x))} - \frac{(1)log_{x}^{cos(x)}}{(x)})}{(ln(x))})}{xln(x)} - \frac{log_{x}^{cos(x)}*-1}{xln^{2}(x)(x)}\\=&\frac{2sin(x)}{xln^{2}(x)cos(x)} - \frac{sin^{2}(x)}{ln(x)cos^{2}(x)} - \frac{1}{ln(x)} + \frac{log_{x}^{cos(x)}}{x^{2}ln(x)} + \frac{2log_{x}^{cos(x)}}{x^{2}ln^{2}(x)}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{2sin(x)}{xln^{2}(x)cos(x)} - \frac{sin^{2}(x)}{ln(x)cos^{2}(x)} - \frac{1}{ln(x)} + \frac{log_{x}^{cos(x)}}{x^{2}ln(x)} + \frac{2log_{x}^{cos(x)}}{x^{2}ln^{2}(x)}\right)}{dx}\\=&\frac{2*-sin(x)}{x^{2}ln^{2}(x)cos(x)} + \frac{2*-2sin(x)}{xln^{3}(x)(x)cos(x)} + \frac{2cos(x)}{xln^{2}(x)cos(x)} + \frac{2sin(x)sin(x)}{xln^{2}(x)cos^{2}(x)} - \frac{-sin^{2}(x)}{ln^{2}(x)(x)cos^{2}(x)} - \frac{2sin(x)cos(x)}{ln(x)cos^{2}(x)} - \frac{sin^{2}(x)*2sin(x)}{ln(x)cos^{3}(x)} - \frac{-1}{ln^{2}(x)(x)} + \frac{-2log_{x}^{cos(x)}}{x^{3}ln(x)} + \frac{(\frac{(\frac{(-sin(x))}{(cos(x))} - \frac{(1)log_{x}^{cos(x)}}{(x)})}{(ln(x))})}{x^{2}ln(x)} + \frac{log_{x}^{cos(x)}*-1}{x^{2}ln^{2}(x)(x)} + \frac{2*-2log_{x}^{cos(x)}}{x^{3}ln^{2}(x)} + \frac{2(\frac{(\frac{(-sin(x))}{(cos(x))} - \frac{(1)log_{x}^{cos(x)}}{(x)})}{(ln(x))})}{x^{2}ln^{2}(x)} + \frac{2log_{x}^{cos(x)}*-2}{x^{2}ln^{3}(x)(x)}\\=&\frac{-3sin(x)}{x^{2}ln^{2}(x)cos(x)} - \frac{6sin(x)}{x^{2}ln^{3}(x)cos(x)} + \frac{3sin^{2}(x)}{xln^{2}(x)cos^{2}(x)} + \frac{3}{xln^{2}(x)} - \frac{2sin(x)}{ln(x)cos(x)} - \frac{2sin^{3}(x)}{ln(x)cos^{3}(x)} - \frac{2log_{x}^{cos(x)}}{x^{3}ln(x)} - \frac{6log_{x}^{cos(x)}}{x^{3}ln^{2}(x)} - \frac{6log_{x}^{cos(x)}}{x^{3}ln^{3}(x)}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{-3sin(x)}{x^{2}ln^{2}(x)cos(x)} - \frac{6sin(x)}{x^{2}ln^{3}(x)cos(x)} + \frac{3sin^{2}(x)}{xln^{2}(x)cos^{2}(x)} + \frac{3}{xln^{2}(x)} - \frac{2sin(x)}{ln(x)cos(x)} - \frac{2sin^{3}(x)}{ln(x)cos^{3}(x)} - \frac{2log_{x}^{cos(x)}}{x^{3}ln(x)} - \frac{6log_{x}^{cos(x)}}{x^{3}ln^{2}(x)} - \frac{6log_{x}^{cos(x)}}{x^{3}ln^{3}(x)}\right)}{dx}\\=&\frac{-3*-2sin(x)}{x^{3}ln^{2}(x)cos(x)} - \frac{3*-2sin(x)}{x^{2}ln^{3}(x)(x)cos(x)} - \frac{3cos(x)}{x^{2}ln^{2}(x)cos(x)} - \frac{3sin(x)sin(x)}{x^{2}ln^{2}(x)cos^{2}(x)} - \frac{6*-2sin(x)}{x^{3}ln^{3}(x)cos(x)} - \frac{6*-3sin(x)}{x^{2}ln^{4}(x)(x)cos(x)} - \frac{6cos(x)}{x^{2}ln^{3}(x)cos(x)} - \frac{6sin(x)sin(x)}{x^{2}ln^{3}(x)cos^{2}(x)} + \frac{3*-sin^{2}(x)}{x^{2}ln^{2}(x)cos^{2}(x)} + \frac{3*-2sin^{2}(x)}{xln^{3}(x)(x)cos^{2}(x)} + \frac{3*2sin(x)cos(x)}{xln^{2}(x)cos^{2}(x)} + \frac{3sin^{2}(x)*2sin(x)}{xln^{2}(x)cos^{3}(x)} + \frac{3*-1}{x^{2}ln^{2}(x)} + \frac{3*-2}{xln^{3}(x)(x)} - \frac{2*-sin(x)}{ln^{2}(x)(x)cos(x)} - \frac{2cos(x)}{ln(x)cos(x)} - \frac{2sin(x)sin(x)}{ln(x)cos^{2}(x)} - \frac{2*-sin^{3}(x)}{ln^{2}(x)(x)cos^{3}(x)} - \frac{2*3sin^{2}(x)cos(x)}{ln(x)cos^{3}(x)} - \frac{2sin^{3}(x)*3sin(x)}{ln(x)cos^{4}(x)} - \frac{2*-3log_{x}^{cos(x)}}{x^{4}ln(x)} - \frac{2(\frac{(\frac{(-sin(x))}{(cos(x))} - \frac{(1)log_{x}^{cos(x)}}{(x)})}{(ln(x))})}{x^{3}ln(x)} - \frac{2log_{x}^{cos(x)}*-1}{x^{3}ln^{2}(x)(x)} - \frac{6*-3log_{x}^{cos(x)}}{x^{4}ln^{2}(x)} - \frac{6(\frac{(\frac{(-sin(x))}{(cos(x))} - \frac{(1)log_{x}^{cos(x)}}{(x)})}{(ln(x))})}{x^{3}ln^{2}(x)} - \frac{6log_{x}^{cos(x)}*-2}{x^{3}ln^{3}(x)(x)} - \frac{6*-3log_{x}^{cos(x)}}{x^{4}ln^{3}(x)} - \frac{6(\frac{(\frac{(-sin(x))}{(cos(x))} - \frac{(1)log_{x}^{cos(x)}}{(x)})}{(ln(x))})}{x^{3}ln^{3}(x)} - \frac{6log_{x}^{cos(x)}*-3}{x^{3}ln^{4}(x)(x)}\\=&\frac{8sin(x)}{x^{3}ln^{2}(x)cos(x)} + \frac{24sin(x)}{x^{3}ln^{3}(x)cos(x)} - \frac{6sin^{2}(x)}{x^{2}ln^{2}(x)cos^{2}(x)} + \frac{24sin(x)}{x^{3}ln^{4}(x)cos(x)} - \frac{12sin^{2}(x)}{x^{2}ln^{3}(x)cos^{2}(x)} + \frac{8sin(x)}{xln^{2}(x)cos(x)} + \frac{8sin^{3}(x)}{xln^{2}(x)cos^{3}(x)} - \frac{12}{x^{2}ln^{3}(x)} - \frac{6}{x^{2}ln^{2}(x)} - \frac{8sin^{2}(x)}{ln(x)cos^{2}(x)} - \frac{6sin^{4}(x)}{ln(x)cos^{4}(x)} - \frac{2}{ln(x)} + \frac{6log_{x}^{cos(x)}}{x^{4}ln(x)} + \frac{22log_{x}^{cos(x)}}{x^{4}ln^{2}(x)} + \frac{36log_{x}^{cos(x)}}{x^{4}ln^{3}(x)} + \frac{24log_{x}^{cos(x)}}{x^{4}ln^{4}(x)}\\ \end{split}\end{equation} \]

\[ \begin{equation}\begin{split}【3/3】求函数log_{x}^{tan(x)} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( log_{x}^{tan(x)}\right)}{dx}\\=&(\frac{(\frac{(sec^{2}(x)(1))}{(tan(x))} - \frac{(1)log_{x}^{tan(x)}}{(x)})}{(ln(x))})\\=&\frac{sec^{2}(x)}{ln(x)tan(x)} - \frac{log_{x}^{tan(x)}}{xln(x)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{sec^{2}(x)}{ln(x)tan(x)} - \frac{log_{x}^{tan(x)}}{xln(x)}\right)}{dx}\\=&\frac{-sec^{2}(x)}{ln^{2}(x)(x)tan(x)} + \frac{-sec^{2}(x)(1)sec^{2}(x)}{ln(x)tan^{2}(x)} + \frac{2sec^{2}(x)tan(x)}{ln(x)tan(x)} - \frac{-log_{x}^{tan(x)}}{x^{2}ln(x)} - \frac{(\frac{(\frac{(sec^{2}(x)(1))}{(tan(x))} - \frac{(1)log_{x}^{tan(x)}}{(x)})}{(ln(x))})}{xln(x)} - \frac{log_{x}^{tan(x)}*-1}{xln^{2}(x)(x)}\\=&\frac{-2sec^{2}(x)}{xln^{2}(x)tan(x)} - \frac{sec^{4}(x)}{ln(x)tan^{2}(x)} + \frac{2sec^{2}(x)}{ln(x)} + \frac{log_{x}^{tan(x)}}{x^{2}ln(x)} + \frac{2log_{x}^{tan(x)}}{x^{2}ln^{2}(x)}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-2sec^{2}(x)}{xln^{2}(x)tan(x)} - \frac{sec^{4}(x)}{ln(x)tan^{2}(x)} + \frac{2sec^{2}(x)}{ln(x)} + \frac{log_{x}^{tan(x)}}{x^{2}ln(x)} + \frac{2log_{x}^{tan(x)}}{x^{2}ln^{2}(x)}\right)}{dx}\\=&\frac{-2*-sec^{2}(x)}{x^{2}ln^{2}(x)tan(x)} - \frac{2*-2sec^{2}(x)}{xln^{3}(x)(x)tan(x)} - \frac{2*-sec^{2}(x)(1)sec^{2}(x)}{xln^{2}(x)tan^{2}(x)} - \frac{2*2sec^{2}(x)tan(x)}{xln^{2}(x)tan(x)} - \frac{-sec^{4}(x)}{ln^{2}(x)(x)tan^{2}(x)} - \frac{-2sec^{2}(x)(1)sec^{4}(x)}{ln(x)tan^{3}(x)} - \frac{4sec^{4}(x)tan(x)}{ln(x)tan^{2}(x)} + \frac{2*-sec^{2}(x)}{ln^{2}(x)(x)} + \frac{2*2sec^{2}(x)tan(x)}{ln(x)} + \frac{-2log_{x}^{tan(x)}}{x^{3}ln(x)} + \frac{(\frac{(\frac{(sec^{2}(x)(1))}{(tan(x))} - \frac{(1)log_{x}^{tan(x)}}{(x)})}{(ln(x))})}{x^{2}ln(x)} + \frac{log_{x}^{tan(x)}*-1}{x^{2}ln^{2}(x)(x)} + \frac{2*-2log_{x}^{tan(x)}}{x^{3}ln^{2}(x)} + \frac{2(\frac{(\frac{(sec^{2}(x)(1))}{(tan(x))} - \frac{(1)log_{x}^{tan(x)}}{(x)})}{(ln(x))})}{x^{2}ln^{2}(x)} + \frac{2log_{x}^{tan(x)}*-2}{x^{2}ln^{3}(x)(x)}\\=&\frac{3sec^{2}(x)}{x^{2}ln^{2}(x)tan(x)} + \frac{6sec^{2}(x)}{x^{2}ln^{3}(x)tan(x)} + \frac{3sec^{4}(x)}{xln^{2}(x)tan^{2}(x)} - \frac{6sec^{2}(x)}{xln^{2}(x)} + \frac{2sec^{6}(x)}{ln(x)tan^{3}(x)} - \frac{4sec^{4}(x)}{ln(x)tan(x)} + \frac{4tan(x)sec^{2}(x)}{ln(x)} - \frac{2log_{x}^{tan(x)}}{x^{3}ln(x)} - \frac{6log_{x}^{tan(x)}}{x^{3}ln^{2}(x)} - \frac{6log_{x}^{tan(x)}}{x^{3}ln^{3}(x)}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{3sec^{2}(x)}{x^{2}ln^{2}(x)tan(x)} + \frac{6sec^{2}(x)}{x^{2}ln^{3}(x)tan(x)} + \frac{3sec^{4}(x)}{xln^{2}(x)tan^{2}(x)} - \frac{6sec^{2}(x)}{xln^{2}(x)} + \frac{2sec^{6}(x)}{ln(x)tan^{3}(x)} - \frac{4sec^{4}(x)}{ln(x)tan(x)} + \frac{4tan(x)sec^{2}(x)}{ln(x)} - \frac{2log_{x}^{tan(x)}}{x^{3}ln(x)} - \frac{6log_{x}^{tan(x)}}{x^{3}ln^{2}(x)} - \frac{6log_{x}^{tan(x)}}{x^{3}ln^{3}(x)}\right)}{dx}\\=&\frac{3*-2sec^{2}(x)}{x^{3}ln^{2}(x)tan(x)} + \frac{3*-2sec^{2}(x)}{x^{2}ln^{3}(x)(x)tan(x)} + \frac{3*-sec^{2}(x)(1)sec^{2}(x)}{x^{2}ln^{2}(x)tan^{2}(x)} + \frac{3*2sec^{2}(x)tan(x)}{x^{2}ln^{2}(x)tan(x)} + \frac{6*-2sec^{2}(x)}{x^{3}ln^{3}(x)tan(x)} + \frac{6*-3sec^{2}(x)}{x^{2}ln^{4}(x)(x)tan(x)} + \frac{6*-sec^{2}(x)(1)sec^{2}(x)}{x^{2}ln^{3}(x)tan^{2}(x)} + \frac{6*2sec^{2}(x)tan(x)}{x^{2}ln^{3}(x)tan(x)} + \frac{3*-sec^{4}(x)}{x^{2}ln^{2}(x)tan^{2}(x)} + \frac{3*-2sec^{4}(x)}{xln^{3}(x)(x)tan^{2}(x)} + \frac{3*-2sec^{2}(x)(1)sec^{4}(x)}{xln^{2}(x)tan^{3}(x)} + \frac{3*4sec^{4}(x)tan(x)}{xln^{2}(x)tan^{2}(x)} - \frac{6*-sec^{2}(x)}{x^{2}ln^{2}(x)} - \frac{6*-2sec^{2}(x)}{xln^{3}(x)(x)} - \frac{6*2sec^{2}(x)tan(x)}{xln^{2}(x)} + \frac{2*-sec^{6}(x)}{ln^{2}(x)(x)tan^{3}(x)} + \frac{2*-3sec^{2}(x)(1)sec^{6}(x)}{ln(x)tan^{4}(x)} + \frac{2*6sec^{6}(x)tan(x)}{ln(x)tan^{3}(x)} - \frac{4*-sec^{4}(x)}{ln^{2}(x)(x)tan(x)} - \frac{4*-sec^{2}(x)(1)sec^{4}(x)}{ln(x)tan^{2}(x)} - \frac{4*4sec^{4}(x)tan(x)}{ln(x)tan(x)} + \frac{4*-tan(x)sec^{2}(x)}{ln^{2}(x)(x)} + \frac{4sec^{2}(x)(1)sec^{2}(x)}{ln(x)} + \frac{4tan(x)*2sec^{2}(x)tan(x)}{ln(x)} - \frac{2*-3log_{x}^{tan(x)}}{x^{4}ln(x)} - \frac{2(\frac{(\frac{(sec^{2}(x)(1))}{(tan(x))} - \frac{(1)log_{x}^{tan(x)}}{(x)})}{(ln(x))})}{x^{3}ln(x)} - \frac{2log_{x}^{tan(x)}*-1}{x^{3}ln^{2}(x)(x)} - \frac{6*-3log_{x}^{tan(x)}}{x^{4}ln^{2}(x)} - \frac{6(\frac{(\frac{(sec^{2}(x)(1))}{(tan(x))} - \frac{(1)log_{x}^{tan(x)}}{(x)})}{(ln(x))})}{x^{3}ln^{2}(x)} - \frac{6log_{x}^{tan(x)}*-2}{x^{3}ln^{3}(x)(x)} - \frac{6*-3log_{x}^{tan(x)}}{x^{4}ln^{3}(x)} - \frac{6(\frac{(\frac{(sec^{2}(x)(1))}{(tan(x))} - \frac{(1)log_{x}^{tan(x)}}{(x)})}{(ln(x))})}{x^{3}ln^{3}(x)} - \frac{6log_{x}^{tan(x)}*-3}{x^{3}ln^{4}(x)(x)}\\=&\frac{-8sec^{2}(x)}{x^{3}ln^{2}(x)tan(x)} - \frac{24sec^{2}(x)}{x^{3}ln^{3}(x)tan(x)} - \frac{6sec^{4}(x)}{x^{2}ln^{2}(x)tan^{2}(x)} + \frac{12sec^{2}(x)}{x^{2}ln^{2}(x)} - \frac{24sec^{2}(x)}{x^{3}ln^{4}(x)tan(x)} - \frac{12sec^{4}(x)}{x^{2}ln^{3}(x)tan^{2}(x)} + \frac{24sec^{2}(x)}{x^{2}ln^{3}(x)} - \frac{8sec^{6}(x)}{xln^{2}(x)tan^{3}(x)} + \frac{16sec^{4}(x)}{xln^{2}(x)tan(x)} - \frac{16tan(x)sec^{2}(x)}{xln^{2}(x)} - \frac{6sec^{8}(x)}{ln(x)tan^{4}(x)} + \frac{16sec^{6}(x)}{ln(x)tan^{2}(x)} - \frac{12sec^{4}(x)}{ln(x)} + \frac{8tan^{2}(x)sec^{2}(x)}{ln(x)} + \frac{6log_{x}^{tan(x)}}{x^{4}ln(x)} + \frac{22log_{x}^{tan(x)}}{x^{4}ln^{2}(x)} + \frac{36log_{x}^{tan(x)}}{x^{4}ln^{3}(x)} + \frac{24log_{x}^{tan(x)}}{x^{4}ln^{4}(x)}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。