本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{lg(x)}^{2} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = lg^{2}(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( lg^{2}(x)\right)}{dx}\\=&\frac{2lg(x)}{ln{10}(x)}\\=&\frac{2lg(x)}{xln{10}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{2lg(x)}{xln{10}}\right)}{dx}\\=&\frac{2*-lg(x)}{x^{2}ln{10}} + \frac{2*-0lg(x)}{xln^{2}{10}} + \frac{2}{xln{10}ln{10}(x)}\\=&\frac{-2lg(x)}{x^{2}ln{10}} + \frac{2}{x^{2}ln^{2}{10}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-2lg(x)}{x^{2}ln{10}} + \frac{2}{x^{2}ln^{2}{10}}\right)}{dx}\\=&\frac{-2*-2lg(x)}{x^{3}ln{10}} - \frac{2*-0lg(x)}{x^{2}ln^{2}{10}} - \frac{2}{x^{2}ln{10}ln{10}(x)} + \frac{2*-2}{x^{3}ln^{2}{10}} + \frac{2*-2*0}{x^{2}ln^{3}{10}}\\=&\frac{4lg(x)}{x^{3}ln{10}} - \frac{6}{x^{3}ln^{2}{10}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{4lg(x)}{x^{3}ln{10}} - \frac{6}{x^{3}ln^{2}{10}}\right)}{dx}\\=&\frac{4*-3lg(x)}{x^{4}ln{10}} + \frac{4*-0lg(x)}{x^{3}ln^{2}{10}} + \frac{4}{x^{3}ln{10}ln{10}(x)} - \frac{6*-3}{x^{4}ln^{2}{10}} - \frac{6*-2*0}{x^{3}ln^{3}{10}}\\=&\frac{-12lg(x)}{x^{4}ln{10}} + \frac{22}{x^{4}ln^{2}{10}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!