本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{sin(x)}^{20} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sin^{20}(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sin^{20}(x)\right)}{dx}\\=&20sin^{19}(x)cos(x)\\=&20sin^{19}(x)cos(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 20sin^{19}(x)cos(x)\right)}{dx}\\=&20*19sin^{18}(x)cos(x)cos(x) + 20sin^{19}(x)*-sin(x)\\=&380sin^{18}(x)cos^{2}(x) - 20sin^{20}(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 380sin^{18}(x)cos^{2}(x) - 20sin^{20}(x)\right)}{dx}\\=&380*18sin^{17}(x)cos(x)cos^{2}(x) + 380sin^{18}(x)*-2cos(x)sin(x) - 20*20sin^{19}(x)cos(x)\\=&6840sin^{17}(x)cos^{3}(x) - 1160sin^{19}(x)cos(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 6840sin^{17}(x)cos^{3}(x) - 1160sin^{19}(x)cos(x)\right)}{dx}\\=&6840*17sin^{16}(x)cos(x)cos^{3}(x) + 6840sin^{17}(x)*-3cos^{2}(x)sin(x) - 1160*19sin^{18}(x)cos(x)cos(x) - 1160sin^{19}(x)*-sin(x)\\=&116280sin^{16}(x)cos^{4}(x) - 42560sin^{18}(x)cos^{2}(x) + 1160sin^{20}(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!