本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{sin(x)}^{\frac{5}{2}} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sin^{\frac{5}{2}}(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sin^{\frac{5}{2}}(x)\right)}{dx}\\=&\frac{5}{2}sin^{\frac{3}{2}}(x)cos(x)\\=&\frac{5sin^{\frac{3}{2}}(x)cos(x)}{2}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{5sin^{\frac{3}{2}}(x)cos(x)}{2}\right)}{dx}\\=&\frac{5*\frac{3}{2}sin^{\frac{1}{2}}(x)cos(x)cos(x)}{2} + \frac{5sin^{\frac{3}{2}}(x)*-sin(x)}{2}\\=&\frac{15sin^{\frac{1}{2}}(x)cos^{2}(x)}{4} - \frac{5sin^{\frac{5}{2}}(x)}{2}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{15sin^{\frac{1}{2}}(x)cos^{2}(x)}{4} - \frac{5sin^{\frac{5}{2}}(x)}{2}\right)}{dx}\\=&\frac{15*\frac{1}{2}cos(x)cos^{2}(x)}{4sin^{\frac{1}{2}}(x)} + \frac{15sin^{\frac{1}{2}}(x)*-2cos(x)sin(x)}{4} - \frac{5*\frac{5}{2}sin^{\frac{3}{2}}(x)cos(x)}{2}\\=&\frac{15cos^{3}(x)}{8sin^{\frac{1}{2}}(x)} - \frac{55sin^{\frac{3}{2}}(x)cos(x)}{4}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{15cos^{3}(x)}{8sin^{\frac{1}{2}}(x)} - \frac{55sin^{\frac{3}{2}}(x)cos(x)}{4}\right)}{dx}\\=&\frac{15*\frac{-1}{2}cos(x)cos^{3}(x)}{8sin^{\frac{3}{2}}(x)} + \frac{15*-3cos^{2}(x)sin(x)}{8sin^{\frac{1}{2}}(x)} - \frac{55*\frac{3}{2}sin^{\frac{1}{2}}(x)cos(x)cos(x)}{4} - \frac{55sin^{\frac{3}{2}}(x)*-sin(x)}{4}\\=&\frac{-15cos^{4}(x)}{16sin^{\frac{3}{2}}(x)} - \frac{105sin^{\frac{1}{2}}(x)cos^{2}(x)}{4} + \frac{55sin^{\frac{5}{2}}(x)}{4}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!