数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数{lg(x)}^{sin(20)} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {lg(x)}^{sin(20)}\right)}{dx}\\=&({lg(x)}^{sin(20)}((cos(20)*0)ln(lg(x)) + \frac{(sin(20))(\frac{1}{ln{10}(x)})}{(lg(x))}))\\=&\frac{{lg(x)}^{sin(20)}sin(20)}{xln{10}lg(x)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{{lg(x)}^{sin(20)}sin(20)}{xln{10}lg(x)}\right)}{dx}\\=&\frac{-{lg(x)}^{sin(20)}sin(20)}{x^{2}ln{10}lg(x)} + \frac{({lg(x)}^{sin(20)}((cos(20)*0)ln(lg(x)) + \frac{(sin(20))(\frac{1}{ln{10}(x)})}{(lg(x))}))sin(20)}{xln{10}lg(x)} + \frac{{lg(x)}^{sin(20)}*-0sin(20)}{xln^{2}{10}lg(x)} + \frac{{lg(x)}^{sin(20)}*-sin(20)}{xln{10}lg^{2}(x)ln{10}(x)} + \frac{{lg(x)}^{sin(20)}cos(20)*0}{xln{10}lg(x)}\\=&\frac{-{lg(x)}^{sin(20)}sin(20)}{x^{2}ln{10}lg(x)} + \frac{{lg(x)}^{sin(20)}sin^{2}(20)}{x^{2}ln^{2}{10}lg^{2}(x)} - \frac{{lg(x)}^{sin(20)}sin(20)}{x^{2}ln^{2}{10}lg^{2}(x)}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-{lg(x)}^{sin(20)}sin(20)}{x^{2}ln{10}lg(x)} + \frac{{lg(x)}^{sin(20)}sin^{2}(20)}{x^{2}ln^{2}{10}lg^{2}(x)} - \frac{{lg(x)}^{sin(20)}sin(20)}{x^{2}ln^{2}{10}lg^{2}(x)}\right)}{dx}\\=&\frac{--2{lg(x)}^{sin(20)}sin(20)}{x^{3}ln{10}lg(x)} - \frac{({lg(x)}^{sin(20)}((cos(20)*0)ln(lg(x)) + \frac{(sin(20))(\frac{1}{ln{10}(x)})}{(lg(x))}))sin(20)}{x^{2}ln{10}lg(x)} - \frac{{lg(x)}^{sin(20)}*-0sin(20)}{x^{2}ln^{2}{10}lg(x)} - \frac{{lg(x)}^{sin(20)}*-sin(20)}{x^{2}ln{10}lg^{2}(x)ln{10}(x)} - \frac{{lg(x)}^{sin(20)}cos(20)*0}{x^{2}ln{10}lg(x)} + \frac{-2{lg(x)}^{sin(20)}sin^{2}(20)}{x^{3}ln^{2}{10}lg^{2}(x)} + \frac{({lg(x)}^{sin(20)}((cos(20)*0)ln(lg(x)) + \frac{(sin(20))(\frac{1}{ln{10}(x)})}{(lg(x))}))sin^{2}(20)}{x^{2}ln^{2}{10}lg^{2}(x)} + \frac{{lg(x)}^{sin(20)}*-2*0sin^{2}(20)}{x^{2}ln^{3}{10}lg^{2}(x)} + \frac{{lg(x)}^{sin(20)}*-2sin^{2}(20)}{x^{2}ln^{2}{10}lg^{3}(x)ln{10}(x)} + \frac{{lg(x)}^{sin(20)}*2sin(20)cos(20)*0}{x^{2}ln^{2}{10}lg^{2}(x)} - \frac{-2{lg(x)}^{sin(20)}sin(20)}{x^{3}ln^{2}{10}lg^{2}(x)} - \frac{({lg(x)}^{sin(20)}((cos(20)*0)ln(lg(x)) + \frac{(sin(20))(\frac{1}{ln{10}(x)})}{(lg(x))}))sin(20)}{x^{2}ln^{2}{10}lg^{2}(x)} - \frac{{lg(x)}^{sin(20)}*-2*0sin(20)}{x^{2}ln^{3}{10}lg^{2}(x)} - \frac{{lg(x)}^{sin(20)}*-2sin(20)}{x^{2}ln^{2}{10}lg^{3}(x)ln{10}(x)} - \frac{{lg(x)}^{sin(20)}cos(20)*0}{x^{2}ln^{2}{10}lg^{2}(x)}\\=& - \frac{3{lg(x)}^{sin(20)}sin^{2}(20)}{x^{3}ln^{2}{10}lg^{2}(x)} + \frac{3{lg(x)}^{sin(20)}sin(20)}{x^{3}ln^{2}{10}lg^{2}(x)} + \frac{{lg(x)}^{sin(20)}sin^{3}(20)}{x^{3}ln^{3}{10}lg^{3}(x)} + \frac{2{lg(x)}^{sin(20)}sin(20)}{x^{3}ln{10}lg(x)} - \frac{3{lg(x)}^{sin(20)}sin^{2}(20)}{x^{3}ln^{3}{10}lg^{3}(x)} + \frac{2{lg(x)}^{sin(20)}sin(20)}{x^{3}ln^{3}{10}lg^{3}(x)}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( - \frac{3{lg(x)}^{sin(20)}sin^{2}(20)}{x^{3}ln^{2}{10}lg^{2}(x)} + \frac{3{lg(x)}^{sin(20)}sin(20)}{x^{3}ln^{2}{10}lg^{2}(x)} + \frac{{lg(x)}^{sin(20)}sin^{3}(20)}{x^{3}ln^{3}{10}lg^{3}(x)} + \frac{2{lg(x)}^{sin(20)}sin(20)}{x^{3}ln{10}lg(x)} - \frac{3{lg(x)}^{sin(20)}sin^{2}(20)}{x^{3}ln^{3}{10}lg^{3}(x)} + \frac{2{lg(x)}^{sin(20)}sin(20)}{x^{3}ln^{3}{10}lg^{3}(x)}\right)}{dx}\\=& - \frac{3*-3{lg(x)}^{sin(20)}sin^{2}(20)}{x^{4}ln^{2}{10}lg^{2}(x)} - \frac{3({lg(x)}^{sin(20)}((cos(20)*0)ln(lg(x)) + \frac{(sin(20))(\frac{1}{ln{10}(x)})}{(lg(x))}))sin^{2}(20)}{x^{3}ln^{2}{10}lg^{2}(x)} - \frac{3{lg(x)}^{sin(20)}*-2*0sin^{2}(20)}{x^{3}ln^{3}{10}lg^{2}(x)} - \frac{3{lg(x)}^{sin(20)}*-2sin^{2}(20)}{x^{3}ln^{2}{10}lg^{3}(x)ln{10}(x)} - \frac{3{lg(x)}^{sin(20)}*2sin(20)cos(20)*0}{x^{3}ln^{2}{10}lg^{2}(x)} + \frac{3*-3{lg(x)}^{sin(20)}sin(20)}{x^{4}ln^{2}{10}lg^{2}(x)} + \frac{3({lg(x)}^{sin(20)}((cos(20)*0)ln(lg(x)) + \frac{(sin(20))(\frac{1}{ln{10}(x)})}{(lg(x))}))sin(20)}{x^{3}ln^{2}{10}lg^{2}(x)} + \frac{3{lg(x)}^{sin(20)}*-2*0sin(20)}{x^{3}ln^{3}{10}lg^{2}(x)} + \frac{3{lg(x)}^{sin(20)}*-2sin(20)}{x^{3}ln^{2}{10}lg^{3}(x)ln{10}(x)} + \frac{3{lg(x)}^{sin(20)}cos(20)*0}{x^{3}ln^{2}{10}lg^{2}(x)} + \frac{-3{lg(x)}^{sin(20)}sin^{3}(20)}{x^{4}ln^{3}{10}lg^{3}(x)} + \frac{({lg(x)}^{sin(20)}((cos(20)*0)ln(lg(x)) + \frac{(sin(20))(\frac{1}{ln{10}(x)})}{(lg(x))}))sin^{3}(20)}{x^{3}ln^{3}{10}lg^{3}(x)} + \frac{{lg(x)}^{sin(20)}*-3*0sin^{3}(20)}{x^{3}ln^{4}{10}lg^{3}(x)} + \frac{{lg(x)}^{sin(20)}*-3sin^{3}(20)}{x^{3}ln^{3}{10}lg^{4}(x)ln{10}(x)} + \frac{{lg(x)}^{sin(20)}*3sin^{2}(20)cos(20)*0}{x^{3}ln^{3}{10}lg^{3}(x)} + \frac{2*-3{lg(x)}^{sin(20)}sin(20)}{x^{4}ln{10}lg(x)} + \frac{2({lg(x)}^{sin(20)}((cos(20)*0)ln(lg(x)) + \frac{(sin(20))(\frac{1}{ln{10}(x)})}{(lg(x))}))sin(20)}{x^{3}ln{10}lg(x)} + \frac{2{lg(x)}^{sin(20)}*-0sin(20)}{x^{3}ln^{2}{10}lg(x)} + \frac{2{lg(x)}^{sin(20)}*-sin(20)}{x^{3}ln{10}lg^{2}(x)ln{10}(x)} + \frac{2{lg(x)}^{sin(20)}cos(20)*0}{x^{3}ln{10}lg(x)} - \frac{3*-3{lg(x)}^{sin(20)}sin^{2}(20)}{x^{4}ln^{3}{10}lg^{3}(x)} - \frac{3({lg(x)}^{sin(20)}((cos(20)*0)ln(lg(x)) + \frac{(sin(20))(\frac{1}{ln{10}(x)})}{(lg(x))}))sin^{2}(20)}{x^{3}ln^{3}{10}lg^{3}(x)} - \frac{3{lg(x)}^{sin(20)}*-3*0sin^{2}(20)}{x^{3}ln^{4}{10}lg^{3}(x)} - \frac{3{lg(x)}^{sin(20)}*-3sin^{2}(20)}{x^{3}ln^{3}{10}lg^{4}(x)ln{10}(x)} - \frac{3{lg(x)}^{sin(20)}*2sin(20)cos(20)*0}{x^{3}ln^{3}{10}lg^{3}(x)} + \frac{2*-3{lg(x)}^{sin(20)}sin(20)}{x^{4}ln^{3}{10}lg^{3}(x)} + \frac{2({lg(x)}^{sin(20)}((cos(20)*0)ln(lg(x)) + \frac{(sin(20))(\frac{1}{ln{10}(x)})}{(lg(x))}))sin(20)}{x^{3}ln^{3}{10}lg^{3}(x)} + \frac{2{lg(x)}^{sin(20)}*-3*0sin(20)}{x^{3}ln^{4}{10}lg^{3}(x)} + \frac{2{lg(x)}^{sin(20)}*-3sin(20)}{x^{3}ln^{3}{10}lg^{4}(x)ln{10}(x)} + \frac{2{lg(x)}^{sin(20)}cos(20)*0}{x^{3}ln^{3}{10}lg^{3}(x)}\\=& - \frac{6{lg(x)}^{sin(20)}sin^{3}(20)}{x^{4}ln^{3}{10}lg^{3}(x)} - \frac{11{lg(x)}^{sin(20)}sin(20)}{x^{4}ln^{2}{10}lg^{2}(x)} + \frac{18{lg(x)}^{sin(20)}sin^{2}(20)}{x^{4}ln^{3}{10}lg^{3}(x)} - \frac{12{lg(x)}^{sin(20)}sin(20)}{x^{4}ln^{3}{10}lg^{3}(x)} + \frac{{lg(x)}^{sin(20)}sin^{4}(20)}{x^{4}ln^{4}{10}lg^{4}(x)} + \frac{11{lg(x)}^{sin(20)}sin^{2}(20)}{x^{4}ln^{2}{10}lg^{2}(x)} - \frac{6{lg(x)}^{sin(20)}sin^{3}(20)}{x^{4}ln^{4}{10}lg^{4}(x)} - \frac{6{lg(x)}^{sin(20)}sin(20)}{x^{4}ln{10}lg(x)} + \frac{11{lg(x)}^{sin(20)}sin^{2}(20)}{x^{4}ln^{4}{10}lg^{4}(x)} - \frac{6{lg(x)}^{sin(20)}sin(20)}{x^{4}ln^{4}{10}lg^{4}(x)}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。