数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数{arcsin(x)}^{20000000} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = arcsin^{20000000}(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( arcsin^{20000000}(x)\right)}{dx}\\=&(\frac{20000000arcsin^{19999999}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})\\=&\frac{20000000arcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{20000000arcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&20000000(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})arcsin^{19999999}(x) + \frac{20000000(\frac{19999999arcsin^{19999998}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{20000000xarcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{399999980000000arcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{20000000xarcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{399999980000000arcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&20000000(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})xarcsin^{19999999}(x) + \frac{20000000arcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{20000000x(\frac{19999999arcsin^{19999998}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{399999980000000(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})arcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{1}{2}}} + \frac{399999980000000(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})arcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{1}{2}}} + \frac{399999980000000(\frac{19999998arcsin^{19999997}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{60000000x^{2}arcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{5}{2}}} + \frac{20000000arcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{399999980000000xarcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}} + \frac{799999960000000xarcsin^{19999998}(x)}{(-x^{2} + 1)^{2}} - \frac{5888127989905401344arcsin^{19999997}(x)}{(-x^{2} + 1)(-x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{60000000x^{2}arcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{5}{2}}} + \frac{20000000arcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{399999980000000xarcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}} + \frac{799999960000000xarcsin^{19999998}(x)}{(-x^{2} + 1)^{2}} - \frac{5888127989905401344arcsin^{19999997}(x)}{(-x^{2} + 1)(-x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&60000000(\frac{\frac{-5}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{7}{2}}})x^{2}arcsin^{19999999}(x) + \frac{60000000*2xarcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{5}{2}}} + \frac{60000000x^{2}(\frac{19999999arcsin^{19999998}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{5}{2}}} + 20000000(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})arcsin^{19999999}(x) + \frac{20000000(\frac{19999999arcsin^{19999998}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{399999980000000(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})xarcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{399999980000000(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})xarcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{1}{2}}} + \frac{399999980000000arcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}} + \frac{399999980000000x(\frac{19999998arcsin^{19999997}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}} + 799999960000000(\frac{-2(-2x + 0)}{(-x^{2} + 1)^{3}})xarcsin^{19999998}(x) + \frac{799999960000000arcsin^{19999998}(x)}{(-x^{2} + 1)^{2}} + \frac{799999960000000x(\frac{19999998arcsin^{19999997}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{2}} - \frac{5888127989905401344(\frac{-(-2x + 0)}{(-x^{2} + 1)^{2}})arcsin^{19999997}(x)}{(-x^{2} + 1)^{\frac{1}{2}}} - \frac{5888127989905401344(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})arcsin^{19999997}(x)}{(-x^{2} + 1)} - \frac{5888127989905401344(\frac{19999997arcsin^{19999996}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)(-x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{300000000x^{3}arcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{7}{2}}} + \frac{180000000xarcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{5}{2}}} + \frac{1199999940000000x^{2}arcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{5}{2}}} + \frac{399999980000000arcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}} + \frac{4799999760000000x^{2}arcsin^{19999998}(x)}{(-x^{2} + 1)^{3}} + \frac{1199999940000000arcsin^{19999998}(x)}{(-x^{2} + 1)^{2}} - \frac{5888127989905401344xarcsin^{19999997}(x)}{(-x^{2} + 1)^{2}(-x^{2} + 1)^{\frac{1}{2}}} + \frac{6670488093898748928xarcsin^{19999997}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{2}} + \frac{782360103993347584xarcsin^{19999997}(x)}{(-x^{2} + 1)^{\frac{5}{2}}} - \frac{3706688176411381248arcsin^{19999996}(x)}{(-x^{2} + 1)^{\frac{3}{2}}(-x^{2} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。