本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{arcsin(x)}^{20000000} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = arcsin^{20000000}(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( arcsin^{20000000}(x)\right)}{dx}\\=&(\frac{20000000arcsin^{19999999}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})\\=&\frac{20000000arcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{20000000arcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&20000000(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})arcsin^{19999999}(x) + \frac{20000000(\frac{19999999arcsin^{19999998}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{20000000xarcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{399999980000000arcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{20000000xarcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{399999980000000arcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&20000000(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})xarcsin^{19999999}(x) + \frac{20000000arcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{20000000x(\frac{19999999arcsin^{19999998}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{399999980000000(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})arcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{1}{2}}} + \frac{399999980000000(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})arcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{1}{2}}} + \frac{399999980000000(\frac{19999998arcsin^{19999997}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{60000000x^{2}arcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{5}{2}}} + \frac{20000000arcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{399999980000000xarcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}} + \frac{799999960000000xarcsin^{19999998}(x)}{(-x^{2} + 1)^{2}} - \frac{5888127989905401344arcsin^{19999997}(x)}{(-x^{2} + 1)(-x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{60000000x^{2}arcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{5}{2}}} + \frac{20000000arcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{399999980000000xarcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}} + \frac{799999960000000xarcsin^{19999998}(x)}{(-x^{2} + 1)^{2}} - \frac{5888127989905401344arcsin^{19999997}(x)}{(-x^{2} + 1)(-x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&60000000(\frac{\frac{-5}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{7}{2}}})x^{2}arcsin^{19999999}(x) + \frac{60000000*2xarcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{5}{2}}} + \frac{60000000x^{2}(\frac{19999999arcsin^{19999998}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{5}{2}}} + 20000000(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})arcsin^{19999999}(x) + \frac{20000000(\frac{19999999arcsin^{19999998}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{399999980000000(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})xarcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{399999980000000(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})xarcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{1}{2}}} + \frac{399999980000000arcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}} + \frac{399999980000000x(\frac{19999998arcsin^{19999997}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}} + 799999960000000(\frac{-2(-2x + 0)}{(-x^{2} + 1)^{3}})xarcsin^{19999998}(x) + \frac{799999960000000arcsin^{19999998}(x)}{(-x^{2} + 1)^{2}} + \frac{799999960000000x(\frac{19999998arcsin^{19999997}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{2}} - \frac{5888127989905401344(\frac{-(-2x + 0)}{(-x^{2} + 1)^{2}})arcsin^{19999997}(x)}{(-x^{2} + 1)^{\frac{1}{2}}} - \frac{5888127989905401344(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})arcsin^{19999997}(x)}{(-x^{2} + 1)} - \frac{5888127989905401344(\frac{19999997arcsin^{19999996}(x)(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)(-x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{300000000x^{3}arcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{7}{2}}} + \frac{180000000xarcsin^{19999999}(x)}{(-x^{2} + 1)^{\frac{5}{2}}} + \frac{1199999940000000x^{2}arcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{5}{2}}} + \frac{399999980000000arcsin^{19999998}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}} + \frac{4799999760000000x^{2}arcsin^{19999998}(x)}{(-x^{2} + 1)^{3}} + \frac{1199999940000000arcsin^{19999998}(x)}{(-x^{2} + 1)^{2}} - \frac{5888127989905401344xarcsin^{19999997}(x)}{(-x^{2} + 1)^{2}(-x^{2} + 1)^{\frac{1}{2}}} + \frac{6670488093898748928xarcsin^{19999997}(x)}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{2}} + \frac{782360103993347584xarcsin^{19999997}(x)}{(-x^{2} + 1)^{\frac{5}{2}}} - \frac{3706688176411381248arcsin^{19999996}(x)}{(-x^{2} + 1)^{\frac{3}{2}}(-x^{2} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!