本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{cot(x)}{tan(x)} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{cot(x)}{tan(x)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{cot(x)}{tan(x)}\right)}{dx}\\=&\frac{-sec^{2}(x)(1)cot(x)}{tan^{2}(x)} + \frac{-csc^{2}(x)}{tan(x)}\\=&\frac{-cot(x)sec^{2}(x)}{tan^{2}(x)} - \frac{csc^{2}(x)}{tan(x)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-cot(x)sec^{2}(x)}{tan^{2}(x)} - \frac{csc^{2}(x)}{tan(x)}\right)}{dx}\\=&\frac{--2sec^{2}(x)(1)cot(x)sec^{2}(x)}{tan^{3}(x)} - \frac{-csc^{2}(x)sec^{2}(x)}{tan^{2}(x)} - \frac{cot(x)*2sec^{2}(x)tan(x)}{tan^{2}(x)} - \frac{-sec^{2}(x)(1)csc^{2}(x)}{tan^{2}(x)} - \frac{-2csc^{2}(x)cot(x)}{tan(x)}\\=&\frac{2cot(x)sec^{4}(x)}{tan^{3}(x)} + \frac{2sec^{2}(x)csc^{2}(x)}{tan^{2}(x)} - \frac{2cot(x)sec^{2}(x)}{tan(x)} + \frac{2cot(x)csc^{2}(x)}{tan(x)}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{2cot(x)sec^{4}(x)}{tan^{3}(x)} + \frac{2sec^{2}(x)csc^{2}(x)}{tan^{2}(x)} - \frac{2cot(x)sec^{2}(x)}{tan(x)} + \frac{2cot(x)csc^{2}(x)}{tan(x)}\right)}{dx}\\=&\frac{2*-3sec^{2}(x)(1)cot(x)sec^{4}(x)}{tan^{4}(x)} + \frac{2*-csc^{2}(x)sec^{4}(x)}{tan^{3}(x)} + \frac{2cot(x)*4sec^{4}(x)tan(x)}{tan^{3}(x)} + \frac{2*-2sec^{2}(x)(1)sec^{2}(x)csc^{2}(x)}{tan^{3}(x)} + \frac{2*2sec^{2}(x)tan(x)csc^{2}(x)}{tan^{2}(x)} + \frac{2sec^{2}(x)*-2csc^{2}(x)cot(x)}{tan^{2}(x)} - \frac{2*-sec^{2}(x)(1)cot(x)sec^{2}(x)}{tan^{2}(x)} - \frac{2*-csc^{2}(x)sec^{2}(x)}{tan(x)} - \frac{2cot(x)*2sec^{2}(x)tan(x)}{tan(x)} + \frac{2*-sec^{2}(x)(1)cot(x)csc^{2}(x)}{tan^{2}(x)} + \frac{2*-csc^{2}(x)csc^{2}(x)}{tan(x)} + \frac{2cot(x)*-2csc^{2}(x)cot(x)}{tan(x)}\\=& - \frac{6cot(x)sec^{2}(x)csc^{2}(x)}{tan^{2}(x)} - \frac{6sec^{4}(x)csc^{2}(x)}{tan^{3}(x)} + \frac{10cot(x)sec^{4}(x)}{tan^{2}(x)} + \frac{6sec^{2}(x)csc^{2}(x)}{tan(x)} - \frac{6cot(x)sec^{6}(x)}{tan^{4}(x)} - 4cot(x)sec^{2}(x) - \frac{2csc^{4}(x)}{tan(x)} - \frac{4cot^{2}(x)csc^{2}(x)}{tan(x)}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( - \frac{6cot(x)sec^{2}(x)csc^{2}(x)}{tan^{2}(x)} - \frac{6sec^{4}(x)csc^{2}(x)}{tan^{3}(x)} + \frac{10cot(x)sec^{4}(x)}{tan^{2}(x)} + \frac{6sec^{2}(x)csc^{2}(x)}{tan(x)} - \frac{6cot(x)sec^{6}(x)}{tan^{4}(x)} - 4cot(x)sec^{2}(x) - \frac{2csc^{4}(x)}{tan(x)} - \frac{4cot^{2}(x)csc^{2}(x)}{tan(x)}\right)}{dx}\\=& - \frac{6*-2sec^{2}(x)(1)cot(x)sec^{2}(x)csc^{2}(x)}{tan^{3}(x)} - \frac{6*-csc^{2}(x)sec^{2}(x)csc^{2}(x)}{tan^{2}(x)} - \frac{6cot(x)*2sec^{2}(x)tan(x)csc^{2}(x)}{tan^{2}(x)} - \frac{6cot(x)sec^{2}(x)*-2csc^{2}(x)cot(x)}{tan^{2}(x)} - \frac{6*-3sec^{2}(x)(1)sec^{4}(x)csc^{2}(x)}{tan^{4}(x)} - \frac{6*4sec^{4}(x)tan(x)csc^{2}(x)}{tan^{3}(x)} - \frac{6sec^{4}(x)*-2csc^{2}(x)cot(x)}{tan^{3}(x)} + \frac{10*-2sec^{2}(x)(1)cot(x)sec^{4}(x)}{tan^{3}(x)} + \frac{10*-csc^{2}(x)sec^{4}(x)}{tan^{2}(x)} + \frac{10cot(x)*4sec^{4}(x)tan(x)}{tan^{2}(x)} + \frac{6*-sec^{2}(x)(1)sec^{2}(x)csc^{2}(x)}{tan^{2}(x)} + \frac{6*2sec^{2}(x)tan(x)csc^{2}(x)}{tan(x)} + \frac{6sec^{2}(x)*-2csc^{2}(x)cot(x)}{tan(x)} - \frac{6*-4sec^{2}(x)(1)cot(x)sec^{6}(x)}{tan^{5}(x)} - \frac{6*-csc^{2}(x)sec^{6}(x)}{tan^{4}(x)} - \frac{6cot(x)*6sec^{6}(x)tan(x)}{tan^{4}(x)} - 4*-csc^{2}(x)sec^{2}(x) - 4cot(x)*2sec^{2}(x)tan(x) - \frac{2*-sec^{2}(x)(1)csc^{4}(x)}{tan^{2}(x)} - \frac{2*-4csc^{4}(x)cot(x)}{tan(x)} - \frac{4*-sec^{2}(x)(1)cot^{2}(x)csc^{2}(x)}{tan^{2}(x)} - \frac{4*-2cot(x)csc^{2}(x)csc^{2}(x)}{tan(x)} - \frac{4cot^{2}(x)*-2csc^{2}(x)cot(x)}{tan(x)}\\=&\frac{24cot(x)sec^{4}(x)csc^{2}(x)}{tan^{3}(x)} + \frac{8sec^{2}(x)csc^{4}(x)}{tan^{2}(x)} - \frac{24cot(x)sec^{2}(x)csc^{2}(x)}{tan(x)} + \frac{16cot^{2}(x)sec^{2}(x)csc^{2}(x)}{tan^{2}(x)} + \frac{24sec^{6}(x)csc^{2}(x)}{tan^{4}(x)} - \frac{40sec^{4}(x)csc^{2}(x)}{tan^{2}(x)} - \frac{56cot(x)sec^{6}(x)}{tan^{3}(x)} + \frac{40cot(x)sec^{4}(x)}{tan(x)} + 16sec^{2}(x)csc^{2}(x) + \frac{24cot(x)sec^{8}(x)}{tan^{5}(x)} + \frac{16cot(x)csc^{4}(x)}{tan(x)} - 8tan(x)cot(x)sec^{2}(x) + \frac{8cot^{3}(x)csc^{2}(x)}{tan(x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!