本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{sin(x)}^{(\frac{7}{3})} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {sin(x)}^{\frac{7}{3}}\right)}{dx}\\=&({sin(x)}^{\frac{7}{3}}((0)ln(sin(x)) + \frac{(\frac{7}{3})(cos(x))}{(sin(x))}))\\=&\frac{7sin^{\frac{4}{3}}(x)cos(x)}{3}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{7sin^{\frac{4}{3}}(x)cos(x)}{3}\right)}{dx}\\=&\frac{7*\frac{4}{3}sin^{\frac{1}{3}}(x)cos(x)cos(x)}{3} + \frac{7sin^{\frac{4}{3}}(x)*-sin(x)}{3}\\=&\frac{28sin^{\frac{1}{3}}(x)cos^{2}(x)}{9} - \frac{7sin^{\frac{7}{3}}(x)}{3}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{28sin^{\frac{1}{3}}(x)cos^{2}(x)}{9} - \frac{7sin^{\frac{7}{3}}(x)}{3}\right)}{dx}\\=&\frac{28*\frac{1}{3}cos(x)cos^{2}(x)}{9sin^{\frac{2}{3}}(x)} + \frac{28sin^{\frac{1}{3}}(x)*-2cos(x)sin(x)}{9} - \frac{7*\frac{7}{3}sin^{\frac{4}{3}}(x)cos(x)}{3}\\=&\frac{28cos^{3}(x)}{27sin^{\frac{2}{3}}(x)} - \frac{35sin^{\frac{4}{3}}(x)cos(x)}{3}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{28cos^{3}(x)}{27sin^{\frac{2}{3}}(x)} - \frac{35sin^{\frac{4}{3}}(x)cos(x)}{3}\right)}{dx}\\=&\frac{28*\frac{-2}{3}cos(x)cos^{3}(x)}{27sin^{\frac{5}{3}}(x)} + \frac{28*-3cos^{2}(x)sin(x)}{27sin^{\frac{2}{3}}(x)} - \frac{35*\frac{4}{3}sin^{\frac{1}{3}}(x)cos(x)cos(x)}{3} - \frac{35sin^{\frac{4}{3}}(x)*-sin(x)}{3}\\=&\frac{-56cos^{4}(x)}{81sin^{\frac{5}{3}}(x)} - \frac{56sin^{\frac{1}{3}}(x)cos^{2}(x)}{3} + \frac{35sin^{\frac{7}{3}}(x)}{3}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!