数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{(x + x - xx)}{e^{lg(sin(x))}} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{2x}{e^{lg(sin(x))}} - \frac{x^{2}}{e^{lg(sin(x))}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{2x}{e^{lg(sin(x))}} - \frac{x^{2}}{e^{lg(sin(x))}}\right)}{dx}\\=&\frac{2}{e^{lg(sin(x))}} + \frac{2x*-e^{lg(sin(x))}cos(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))} - \frac{2x}{e^{lg(sin(x))}} - \frac{x^{2}*-e^{lg(sin(x))}cos(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))}\\=&\frac{2}{e^{lg(sin(x))}} - \frac{2xcos(x)}{e^{lg(sin(x))}ln{10}sin(x)} + \frac{x^{2}cos(x)}{e^{lg(sin(x))}ln{10}sin(x)} - \frac{2x}{e^{lg(sin(x))}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{2}{e^{lg(sin(x))}} - \frac{2xcos(x)}{e^{lg(sin(x))}ln{10}sin(x)} + \frac{x^{2}cos(x)}{e^{lg(sin(x))}ln{10}sin(x)} - \frac{2x}{e^{lg(sin(x))}}\right)}{dx}\\=&\frac{2*-e^{lg(sin(x))}cos(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))} - \frac{2cos(x)}{e^{lg(sin(x))}ln{10}sin(x)} - \frac{2x*-e^{lg(sin(x))}cos(x)cos(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))ln{10}sin(x)} - \frac{2x*-0cos(x)}{e^{lg(sin(x))}ln^{2}{10}sin(x)} - \frac{2x*-cos(x)cos(x)}{e^{lg(sin(x))}ln{10}sin^{2}(x)} - \frac{2x*-sin(x)}{e^{lg(sin(x))}ln{10}sin(x)} + \frac{2xcos(x)}{e^{lg(sin(x))}ln{10}sin(x)} + \frac{x^{2}*-e^{lg(sin(x))}cos(x)cos(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))ln{10}sin(x)} + \frac{x^{2}*-0cos(x)}{e^{lg(sin(x))}ln^{2}{10}sin(x)} + \frac{x^{2}*-cos(x)cos(x)}{e^{lg(sin(x))}ln{10}sin^{2}(x)} + \frac{x^{2}*-sin(x)}{e^{lg(sin(x))}ln{10}sin(x)} - \frac{2}{e^{lg(sin(x))}} - \frac{2x*-e^{lg(sin(x))}cos(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))}\\=&\frac{-4cos(x)}{e^{lg(sin(x))}ln{10}sin(x)} + \frac{2xcos^{2}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{2}(x)} + \frac{2xcos^{2}(x)}{e^{lg(sin(x))}ln{10}sin^{2}(x)} + \frac{4xcos(x)}{e^{lg(sin(x))}ln{10}sin(x)} - \frac{x^{2}cos^{2}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{2}(x)} - \frac{x^{2}cos^{2}(x)}{e^{lg(sin(x))}ln{10}sin^{2}(x)} + \frac{2x}{e^{lg(sin(x))}ln{10}} - \frac{x^{2}}{e^{lg(sin(x))}ln{10}} - \frac{2}{e^{lg(sin(x))}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-4cos(x)}{e^{lg(sin(x))}ln{10}sin(x)} + \frac{2xcos^{2}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{2}(x)} + \frac{2xcos^{2}(x)}{e^{lg(sin(x))}ln{10}sin^{2}(x)} + \frac{4xcos(x)}{e^{lg(sin(x))}ln{10}sin(x)} - \frac{x^{2}cos^{2}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{2}(x)} - \frac{x^{2}cos^{2}(x)}{e^{lg(sin(x))}ln{10}sin^{2}(x)} + \frac{2x}{e^{lg(sin(x))}ln{10}} - \frac{x^{2}}{e^{lg(sin(x))}ln{10}} - \frac{2}{e^{lg(sin(x))}}\right)}{dx}\\=&\frac{-4*-e^{lg(sin(x))}cos(x)cos(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))ln{10}sin(x)} - \frac{4*-0cos(x)}{e^{lg(sin(x))}ln^{2}{10}sin(x)} - \frac{4*-cos(x)cos(x)}{e^{lg(sin(x))}ln{10}sin^{2}(x)} - \frac{4*-sin(x)}{e^{lg(sin(x))}ln{10}sin(x)} + \frac{2cos^{2}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{2}(x)} + \frac{2x*-e^{lg(sin(x))}cos(x)cos^{2}(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))ln^{2}{10}sin^{2}(x)} + \frac{2x*-2*0cos^{2}(x)}{e^{lg(sin(x))}ln^{3}{10}sin^{2}(x)} + \frac{2x*-2cos(x)cos^{2}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{3}(x)} + \frac{2x*-2cos(x)sin(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{2}(x)} + \frac{2cos^{2}(x)}{e^{lg(sin(x))}ln{10}sin^{2}(x)} + \frac{2x*-e^{lg(sin(x))}cos(x)cos^{2}(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))ln{10}sin^{2}(x)} + \frac{2x*-0cos^{2}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{2}(x)} + \frac{2x*-2cos(x)cos^{2}(x)}{e^{lg(sin(x))}ln{10}sin^{3}(x)} + \frac{2x*-2cos(x)sin(x)}{e^{lg(sin(x))}ln{10}sin^{2}(x)} + \frac{4cos(x)}{e^{lg(sin(x))}ln{10}sin(x)} + \frac{4x*-e^{lg(sin(x))}cos(x)cos(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))ln{10}sin(x)} + \frac{4x*-0cos(x)}{e^{lg(sin(x))}ln^{2}{10}sin(x)} + \frac{4x*-cos(x)cos(x)}{e^{lg(sin(x))}ln{10}sin^{2}(x)} + \frac{4x*-sin(x)}{e^{lg(sin(x))}ln{10}sin(x)} - \frac{2xcos^{2}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{2}(x)} - \frac{x^{2}*-e^{lg(sin(x))}cos(x)cos^{2}(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))ln^{2}{10}sin^{2}(x)} - \frac{x^{2}*-2*0cos^{2}(x)}{e^{lg(sin(x))}ln^{3}{10}sin^{2}(x)} - \frac{x^{2}*-2cos(x)cos^{2}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{3}(x)} - \frac{x^{2}*-2cos(x)sin(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{2}(x)} - \frac{2xcos^{2}(x)}{e^{lg(sin(x))}ln{10}sin^{2}(x)} - \frac{x^{2}*-e^{lg(sin(x))}cos(x)cos^{2}(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))ln{10}sin^{2}(x)} - \frac{x^{2}*-0cos^{2}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{2}(x)} - \frac{x^{2}*-2cos(x)cos^{2}(x)}{e^{lg(sin(x))}ln{10}sin^{3}(x)} - \frac{x^{2}*-2cos(x)sin(x)}{e^{lg(sin(x))}ln{10}sin^{2}(x)} + \frac{2}{e^{lg(sin(x))}ln{10}} + \frac{2x*-e^{lg(sin(x))}cos(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))ln{10}} + \frac{2x*-0}{e^{lg(sin(x))}ln^{2}{10}} - \frac{2x}{e^{lg(sin(x))}ln{10}} - \frac{x^{2}*-e^{lg(sin(x))}cos(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))ln{10}} - \frac{x^{2}*-0}{e^{lg(sin(x))}ln^{2}{10}} - \frac{2*-e^{lg(sin(x))}cos(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))}\\=&\frac{6cos^{2}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{2}(x)} + \frac{6cos^{2}(x)}{e^{lg(sin(x))}ln{10}sin^{2}(x)} + \frac{6cos(x)}{e^{lg(sin(x))}ln{10}sin(x)} - \frac{2xcos^{3}(x)}{e^{lg(sin(x))}ln^{3}{10}sin^{3}(x)} - \frac{6xcos^{3}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{3}(x)} - \frac{4xcos^{3}(x)}{e^{lg(sin(x))}ln{10}sin^{3}(x)} - \frac{6xcos(x)}{e^{lg(sin(x))}ln^{2}{10}sin(x)} - \frac{6xcos^{2}(x)}{e^{lg(sin(x))}ln{10}sin^{2}(x)} + \frac{3x^{2}cos^{3}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{3}(x)} - \frac{4xcos(x)}{e^{lg(sin(x))}ln{10}sin(x)} + \frac{6}{e^{lg(sin(x))}ln{10}} - \frac{6xcos^{2}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{2}(x)} + \frac{2x^{2}cos^{3}(x)}{e^{lg(sin(x))}ln{10}sin^{3}(x)} + \frac{3x^{2}cos(x)}{e^{lg(sin(x))}ln^{2}{10}sin(x)} + \frac{x^{2}cos^{3}(x)}{e^{lg(sin(x))}ln^{3}{10}sin^{3}(x)} + \frac{2x^{2}cos(x)}{e^{lg(sin(x))}ln{10}sin(x)} - \frac{6x}{e^{lg(sin(x))}ln{10}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{6cos^{2}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{2}(x)} + \frac{6cos^{2}(x)}{e^{lg(sin(x))}ln{10}sin^{2}(x)} + \frac{6cos(x)}{e^{lg(sin(x))}ln{10}sin(x)} - \frac{2xcos^{3}(x)}{e^{lg(sin(x))}ln^{3}{10}sin^{3}(x)} - \frac{6xcos^{3}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{3}(x)} - \frac{4xcos^{3}(x)}{e^{lg(sin(x))}ln{10}sin^{3}(x)} - \frac{6xcos(x)}{e^{lg(sin(x))}ln^{2}{10}sin(x)} - \frac{6xcos^{2}(x)}{e^{lg(sin(x))}ln{10}sin^{2}(x)} + \frac{3x^{2}cos^{3}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{3}(x)} - \frac{4xcos(x)}{e^{lg(sin(x))}ln{10}sin(x)} + \frac{6}{e^{lg(sin(x))}ln{10}} - \frac{6xcos^{2}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{2}(x)} + \frac{2x^{2}cos^{3}(x)}{e^{lg(sin(x))}ln{10}sin^{3}(x)} + \frac{3x^{2}cos(x)}{e^{lg(sin(x))}ln^{2}{10}sin(x)} + \frac{x^{2}cos^{3}(x)}{e^{lg(sin(x))}ln^{3}{10}sin^{3}(x)} + \frac{2x^{2}cos(x)}{e^{lg(sin(x))}ln{10}sin(x)} - \frac{6x}{e^{lg(sin(x))}ln{10}}\right)}{dx}\\=&\frac{6*-e^{lg(sin(x))}cos(x)cos^{2}(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))ln^{2}{10}sin^{2}(x)} + \frac{6*-2*0cos^{2}(x)}{e^{lg(sin(x))}ln^{3}{10}sin^{2}(x)} + \frac{6*-2cos(x)cos^{2}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{3}(x)} + \frac{6*-2cos(x)sin(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{2}(x)} + \frac{6*-e^{lg(sin(x))}cos(x)cos^{2}(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))ln{10}sin^{2}(x)} + \frac{6*-0cos^{2}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{2}(x)} + \frac{6*-2cos(x)cos^{2}(x)}{e^{lg(sin(x))}ln{10}sin^{3}(x)} + \frac{6*-2cos(x)sin(x)}{e^{lg(sin(x))}ln{10}sin^{2}(x)} + \frac{6*-e^{lg(sin(x))}cos(x)cos(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))ln{10}sin(x)} + \frac{6*-0cos(x)}{e^{lg(sin(x))}ln^{2}{10}sin(x)} + \frac{6*-cos(x)cos(x)}{e^{lg(sin(x))}ln{10}sin^{2}(x)} + \frac{6*-sin(x)}{e^{lg(sin(x))}ln{10}sin(x)} - \frac{2cos^{3}(x)}{e^{lg(sin(x))}ln^{3}{10}sin^{3}(x)} - \frac{2x*-e^{lg(sin(x))}cos(x)cos^{3}(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))ln^{3}{10}sin^{3}(x)} - \frac{2x*-3*0cos^{3}(x)}{e^{lg(sin(x))}ln^{4}{10}sin^{3}(x)} - \frac{2x*-3cos(x)cos^{3}(x)}{e^{lg(sin(x))}ln^{3}{10}sin^{4}(x)} - \frac{2x*-3cos^{2}(x)sin(x)}{e^{lg(sin(x))}ln^{3}{10}sin^{3}(x)} - \frac{6cos^{3}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{3}(x)} - \frac{6x*-e^{lg(sin(x))}cos(x)cos^{3}(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))ln^{2}{10}sin^{3}(x)} - \frac{6x*-2*0cos^{3}(x)}{e^{lg(sin(x))}ln^{3}{10}sin^{3}(x)} - \frac{6x*-3cos(x)cos^{3}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{4}(x)} - \frac{6x*-3cos^{2}(x)sin(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{3}(x)} - \frac{4cos^{3}(x)}{e^{lg(sin(x))}ln{10}sin^{3}(x)} - \frac{4x*-e^{lg(sin(x))}cos(x)cos^{3}(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))ln{10}sin^{3}(x)} - \frac{4x*-0cos^{3}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{3}(x)} - \frac{4x*-3cos(x)cos^{3}(x)}{e^{lg(sin(x))}ln{10}sin^{4}(x)} - \frac{4x*-3cos^{2}(x)sin(x)}{e^{lg(sin(x))}ln{10}sin^{3}(x)} - \frac{6cos(x)}{e^{lg(sin(x))}ln^{2}{10}sin(x)} - \frac{6x*-e^{lg(sin(x))}cos(x)cos(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))ln^{2}{10}sin(x)} - \frac{6x*-2*0cos(x)}{e^{lg(sin(x))}ln^{3}{10}sin(x)} - \frac{6x*-cos(x)cos(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{2}(x)} - \frac{6x*-sin(x)}{e^{lg(sin(x))}ln^{2}{10}sin(x)} - \frac{6cos^{2}(x)}{e^{lg(sin(x))}ln{10}sin^{2}(x)} - \frac{6x*-e^{lg(sin(x))}cos(x)cos^{2}(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))ln{10}sin^{2}(x)} - \frac{6x*-0cos^{2}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{2}(x)} - \frac{6x*-2cos(x)cos^{2}(x)}{e^{lg(sin(x))}ln{10}sin^{3}(x)} - \frac{6x*-2cos(x)sin(x)}{e^{lg(sin(x))}ln{10}sin^{2}(x)} + \frac{3*2xcos^{3}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{3}(x)} + \frac{3x^{2}*-e^{lg(sin(x))}cos(x)cos^{3}(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))ln^{2}{10}sin^{3}(x)} + \frac{3x^{2}*-2*0cos^{3}(x)}{e^{lg(sin(x))}ln^{3}{10}sin^{3}(x)} + \frac{3x^{2}*-3cos(x)cos^{3}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{4}(x)} + \frac{3x^{2}*-3cos^{2}(x)sin(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{3}(x)} - \frac{4cos(x)}{e^{lg(sin(x))}ln{10}sin(x)} - \frac{4x*-e^{lg(sin(x))}cos(x)cos(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))ln{10}sin(x)} - \frac{4x*-0cos(x)}{e^{lg(sin(x))}ln^{2}{10}sin(x)} - \frac{4x*-cos(x)cos(x)}{e^{lg(sin(x))}ln{10}sin^{2}(x)} - \frac{4x*-sin(x)}{e^{lg(sin(x))}ln{10}sin(x)} + \frac{6*-e^{lg(sin(x))}cos(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))ln{10}} + \frac{6*-0}{e^{lg(sin(x))}ln^{2}{10}} - \frac{6cos^{2}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{2}(x)} - \frac{6x*-e^{lg(sin(x))}cos(x)cos^{2}(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))ln^{2}{10}sin^{2}(x)} - \frac{6x*-2*0cos^{2}(x)}{e^{lg(sin(x))}ln^{3}{10}sin^{2}(x)} - \frac{6x*-2cos(x)cos^{2}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{3}(x)} - \frac{6x*-2cos(x)sin(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{2}(x)} + \frac{2*2xcos^{3}(x)}{e^{lg(sin(x))}ln{10}sin^{3}(x)} + \frac{2x^{2}*-e^{lg(sin(x))}cos(x)cos^{3}(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))ln{10}sin^{3}(x)} + \frac{2x^{2}*-0cos^{3}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{3}(x)} + \frac{2x^{2}*-3cos(x)cos^{3}(x)}{e^{lg(sin(x))}ln{10}sin^{4}(x)} + \frac{2x^{2}*-3cos^{2}(x)sin(x)}{e^{lg(sin(x))}ln{10}sin^{3}(x)} + \frac{3*2xcos(x)}{e^{lg(sin(x))}ln^{2}{10}sin(x)} + \frac{3x^{2}*-e^{lg(sin(x))}cos(x)cos(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))ln^{2}{10}sin(x)} + \frac{3x^{2}*-2*0cos(x)}{e^{lg(sin(x))}ln^{3}{10}sin(x)} + \frac{3x^{2}*-cos(x)cos(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{2}(x)} + \frac{3x^{2}*-sin(x)}{e^{lg(sin(x))}ln^{2}{10}sin(x)} + \frac{2xcos^{3}(x)}{e^{lg(sin(x))}ln^{3}{10}sin^{3}(x)} + \frac{x^{2}*-e^{lg(sin(x))}cos(x)cos^{3}(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))ln^{3}{10}sin^{3}(x)} + \frac{x^{2}*-3*0cos^{3}(x)}{e^{lg(sin(x))}ln^{4}{10}sin^{3}(x)} + \frac{x^{2}*-3cos(x)cos^{3}(x)}{e^{lg(sin(x))}ln^{3}{10}sin^{4}(x)} + \frac{x^{2}*-3cos^{2}(x)sin(x)}{e^{lg(sin(x))}ln^{3}{10}sin^{3}(x)} + \frac{2*2xcos(x)}{e^{lg(sin(x))}ln{10}sin(x)} + \frac{2x^{2}*-e^{lg(sin(x))}cos(x)cos(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))ln{10}sin(x)} + \frac{2x^{2}*-0cos(x)}{e^{lg(sin(x))}ln^{2}{10}sin(x)} + \frac{2x^{2}*-cos(x)cos(x)}{e^{lg(sin(x))}ln{10}sin^{2}(x)} + \frac{2x^{2}*-sin(x)}{e^{lg(sin(x))}ln{10}sin(x)} - \frac{6}{e^{lg(sin(x))}ln{10}} - \frac{6x*-e^{lg(sin(x))}cos(x)}{e^{{lg(sin(x))}*{2}}ln{10}(sin(x))ln{10}} - \frac{6x*-0}{e^{lg(sin(x))}ln^{2}{10}}\\=&\frac{-8cos^{3}(x)}{e^{lg(sin(x))}ln^{3}{10}sin^{3}(x)} - \frac{24cos^{3}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{3}(x)} - \frac{24cos(x)}{e^{lg(sin(x))}ln^{2}{10}sin(x)} - \frac{16cos^{3}(x)}{e^{lg(sin(x))}ln{10}sin^{3}(x)} - \frac{12cos^{2}(x)}{e^{lg(sin(x))}ln{10}sin^{2}(x)} - \frac{16cos(x)}{e^{lg(sin(x))}ln{10}sin(x)} - \frac{12cos^{2}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{2}(x)} - \frac{12}{e^{lg(sin(x))}ln{10}} + \frac{2xcos^{4}(x)}{e^{lg(sin(x))}ln^{4}{10}sin^{4}(x)} + \frac{12xcos^{4}(x)}{e^{lg(sin(x))}ln^{3}{10}sin^{4}(x)} + \frac{22xcos^{4}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{4}(x)} + \frac{12xcos^{2}(x)}{e^{lg(sin(x))}ln^{3}{10}sin^{2}(x)} + \frac{12xcos^{4}(x)}{e^{lg(sin(x))}ln{10}sin^{4}(x)} + \frac{28xcos^{2}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{2}(x)} + \frac{16xcos^{3}(x)}{e^{lg(sin(x))}ln{10}sin^{3}(x)} - \frac{11x^{2}cos^{4}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{4}(x)} + \frac{16xcos^{2}(x)}{e^{lg(sin(x))}ln{10}sin^{2}(x)} + \frac{24xcos^{3}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{3}(x)} + \frac{16xcos(x)}{e^{lg(sin(x))}ln{10}sin(x)} - \frac{6x^{2}cos^{4}(x)}{e^{lg(sin(x))}ln{10}sin^{4}(x)} - \frac{14x^{2}cos^{2}(x)}{e^{lg(sin(x))}ln^{2}{10}sin^{2}(x)} - \frac{6x^{2}cos^{4}(x)}{e^{lg(sin(x))}ln^{3}{10}sin^{4}(x)} - \frac{8x^{2}cos^{2}(x)}{e^{lg(sin(x))}ln{10}sin^{2}(x)} + \frac{24xcos(x)}{e^{lg(sin(x))}ln^{2}{10}sin(x)} + \frac{8xcos^{3}(x)}{e^{lg(sin(x))}ln^{3}{10}sin^{3}(x)} - \frac{6x^{2}cos^{2}(x)}{e^{lg(sin(x))}ln^{3}{10}sin^{2}(x)} - \frac{x^{2}cos^{4}(x)}{e^{lg(sin(x))}ln^{4}{10}sin^{4}(x)} - \frac{3x^{2}}{e^{lg(sin(x))}ln^{2}{10}} + \frac{4x}{e^{lg(sin(x))}ln{10}} + \frac{6x}{e^{lg(sin(x))}ln^{2}{10}} - \frac{2x^{2}}{e^{lg(sin(x))}ln{10}}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。