本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sin(x)cos(y) + cos(x)sin(y) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sin(x)cos(y) + sin(y)cos(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sin(x)cos(y) + sin(y)cos(x)\right)}{dx}\\=&cos(x)cos(y) + sin(x)*-sin(y)*0 + cos(y)*0cos(x) + sin(y)*-sin(x)\\=&cos(x)cos(y) - sin(x)sin(y)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( cos(x)cos(y) - sin(x)sin(y)\right)}{dx}\\=&-sin(x)cos(y) + cos(x)*-sin(y)*0 - cos(x)sin(y) - sin(x)cos(y)*0\\=&-sin(x)cos(y) - sin(y)cos(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( -sin(x)cos(y) - sin(y)cos(x)\right)}{dx}\\=&-cos(x)cos(y) - sin(x)*-sin(y)*0 - cos(y)*0cos(x) - sin(y)*-sin(x)\\=&-cos(x)cos(y) + sin(x)sin(y)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( -cos(x)cos(y) + sin(x)sin(y)\right)}{dx}\\=&--sin(x)cos(y) - cos(x)*-sin(y)*0 + cos(x)sin(y) + sin(x)cos(y)*0\\=&sin(x)cos(y) + sin(y)cos(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!