本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数e^{sin(x)} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( e^{sin(x)}\right)}{dx}\\=&e^{sin(x)}cos(x)\\=&e^{sin(x)}cos(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( e^{sin(x)}cos(x)\right)}{dx}\\=&e^{sin(x)}cos(x)cos(x) + e^{sin(x)}*-sin(x)\\=&e^{sin(x)}cos^{2}(x) - e^{sin(x)}sin(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( e^{sin(x)}cos^{2}(x) - e^{sin(x)}sin(x)\right)}{dx}\\=&e^{sin(x)}cos(x)cos^{2}(x) + e^{sin(x)}*-2cos(x)sin(x) - e^{sin(x)}cos(x)sin(x) - e^{sin(x)}cos(x)\\=&e^{sin(x)}cos^{3}(x) - 3e^{sin(x)}sin(x)cos(x) - e^{sin(x)}cos(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( e^{sin(x)}cos^{3}(x) - 3e^{sin(x)}sin(x)cos(x) - e^{sin(x)}cos(x)\right)}{dx}\\=&e^{sin(x)}cos(x)cos^{3}(x) + e^{sin(x)}*-3cos^{2}(x)sin(x) - 3e^{sin(x)}cos(x)sin(x)cos(x) - 3e^{sin(x)}cos(x)cos(x) - 3e^{sin(x)}sin(x)*-sin(x) - e^{sin(x)}cos(x)cos(x) - e^{sin(x)}*-sin(x)\\=&e^{sin(x)}cos^{4}(x) - 6e^{sin(x)}sin(x)cos^{2}(x) - 4e^{sin(x)}cos^{2}(x) + 3e^{sin(x)}sin^{2}(x) + e^{sin(x)}sin(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!