本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sin(\frac{lg(x)}{2}) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sin(\frac{1}{2}lg(x))\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sin(\frac{1}{2}lg(x))\right)}{dx}\\=&\frac{cos(\frac{1}{2}lg(x))*\frac{1}{2}}{ln{10}(x)}\\=&\frac{cos(\frac{1}{2}lg(x))}{2xln{10}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{cos(\frac{1}{2}lg(x))}{2xln{10}}\right)}{dx}\\=&\frac{-cos(\frac{1}{2}lg(x))}{2x^{2}ln{10}} + \frac{-0cos(\frac{1}{2}lg(x))}{2xln^{2}{10}} + \frac{-sin(\frac{1}{2}lg(x))*\frac{1}{2}}{2xln{10}ln{10}(x)}\\=&\frac{-cos(\frac{1}{2}lg(x))}{2x^{2}ln{10}} - \frac{sin(\frac{1}{2}lg(x))}{4x^{2}ln^{2}{10}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-cos(\frac{1}{2}lg(x))}{2x^{2}ln{10}} - \frac{sin(\frac{1}{2}lg(x))}{4x^{2}ln^{2}{10}}\right)}{dx}\\=&\frac{--2cos(\frac{1}{2}lg(x))}{2x^{3}ln{10}} - \frac{-0cos(\frac{1}{2}lg(x))}{2x^{2}ln^{2}{10}} - \frac{-sin(\frac{1}{2}lg(x))*\frac{1}{2}}{2x^{2}ln{10}ln{10}(x)} - \frac{-2sin(\frac{1}{2}lg(x))}{4x^{3}ln^{2}{10}} - \frac{-2*0sin(\frac{1}{2}lg(x))}{4x^{2}ln^{3}{10}} - \frac{cos(\frac{1}{2}lg(x))*\frac{1}{2}}{4x^{2}ln^{2}{10}ln{10}(x)}\\=&\frac{cos(\frac{1}{2}lg(x))}{x^{3}ln{10}} + \frac{3sin(\frac{1}{2}lg(x))}{4x^{3}ln^{2}{10}} - \frac{cos(\frac{1}{2}lg(x))}{8x^{3}ln^{3}{10}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{cos(\frac{1}{2}lg(x))}{x^{3}ln{10}} + \frac{3sin(\frac{1}{2}lg(x))}{4x^{3}ln^{2}{10}} - \frac{cos(\frac{1}{2}lg(x))}{8x^{3}ln^{3}{10}}\right)}{dx}\\=&\frac{-3cos(\frac{1}{2}lg(x))}{x^{4}ln{10}} + \frac{-0cos(\frac{1}{2}lg(x))}{x^{3}ln^{2}{10}} + \frac{-sin(\frac{1}{2}lg(x))*\frac{1}{2}}{x^{3}ln{10}ln{10}(x)} + \frac{3*-3sin(\frac{1}{2}lg(x))}{4x^{4}ln^{2}{10}} + \frac{3*-2*0sin(\frac{1}{2}lg(x))}{4x^{3}ln^{3}{10}} + \frac{3cos(\frac{1}{2}lg(x))*\frac{1}{2}}{4x^{3}ln^{2}{10}ln{10}(x)} - \frac{-3cos(\frac{1}{2}lg(x))}{8x^{4}ln^{3}{10}} - \frac{-3*0cos(\frac{1}{2}lg(x))}{8x^{3}ln^{4}{10}} - \frac{-sin(\frac{1}{2}lg(x))*\frac{1}{2}}{8x^{3}ln^{3}{10}ln{10}(x)}\\=&\frac{-3cos(\frac{1}{2}lg(x))}{x^{4}ln{10}} - \frac{11sin(\frac{1}{2}lg(x))}{4x^{4}ln^{2}{10}} + \frac{3cos(\frac{1}{2}lg(x))}{4x^{4}ln^{3}{10}} + \frac{sin(\frac{1}{2}lg(x))}{16x^{4}ln^{4}{10}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!