本次共计算 1 个题目:每一题对 X 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数e^{tan(X)} 关于 X 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( e^{tan(X)}\right)}{dX}\\=&e^{tan(X)}sec^{2}(X)(1)\\=&e^{tan(X)}sec^{2}(X)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( e^{tan(X)}sec^{2}(X)\right)}{dX}\\=&e^{tan(X)}sec^{2}(X)(1)sec^{2}(X) + e^{tan(X)}*2sec^{2}(X)tan(X)\\=&e^{tan(X)}sec^{4}(X) + 2e^{tan(X)}tan(X)sec^{2}(X)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( e^{tan(X)}sec^{4}(X) + 2e^{tan(X)}tan(X)sec^{2}(X)\right)}{dX}\\=&e^{tan(X)}sec^{2}(X)(1)sec^{4}(X) + e^{tan(X)}*4sec^{4}(X)tan(X) + 2e^{tan(X)}sec^{2}(X)(1)tan(X)sec^{2}(X) + 2e^{tan(X)}sec^{2}(X)(1)sec^{2}(X) + 2e^{tan(X)}tan(X)*2sec^{2}(X)tan(X)\\=&e^{tan(X)}sec^{6}(X) + 6e^{tan(X)}tan(X)sec^{4}(X) + 2e^{tan(X)}sec^{4}(X) + 4e^{tan(X)}tan^{2}(X)sec^{2}(X)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( e^{tan(X)}sec^{6}(X) + 6e^{tan(X)}tan(X)sec^{4}(X) + 2e^{tan(X)}sec^{4}(X) + 4e^{tan(X)}tan^{2}(X)sec^{2}(X)\right)}{dX}\\=&e^{tan(X)}sec^{2}(X)(1)sec^{6}(X) + e^{tan(X)}*6sec^{6}(X)tan(X) + 6e^{tan(X)}sec^{2}(X)(1)tan(X)sec^{4}(X) + 6e^{tan(X)}sec^{2}(X)(1)sec^{4}(X) + 6e^{tan(X)}tan(X)*4sec^{4}(X)tan(X) + 2e^{tan(X)}sec^{2}(X)(1)sec^{4}(X) + 2e^{tan(X)}*4sec^{4}(X)tan(X) + 4e^{tan(X)}sec^{2}(X)(1)tan^{2}(X)sec^{2}(X) + 4e^{tan(X)}*2tan(X)sec^{2}(X)(1)sec^{2}(X) + 4e^{tan(X)}tan^{2}(X)*2sec^{2}(X)tan(X)\\=&e^{tan(X)}sec^{8}(X) + 12e^{tan(X)}tan(X)sec^{6}(X) + 28e^{tan(X)}tan^{2}(X)sec^{4}(X) + 8e^{tan(X)}sec^{6}(X) + 16e^{tan(X)}tan(X)sec^{4}(X) + 8e^{tan(X)}tan^{3}(X)sec^{2}(X)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!