本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数cos(x)tan(x) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( cos(x)tan(x)\right)}{dx}\\=&-sin(x)tan(x) + cos(x)sec^{2}(x)(1)\\=&-sin(x)tan(x) + cos(x)sec^{2}(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( -sin(x)tan(x) + cos(x)sec^{2}(x)\right)}{dx}\\=&-cos(x)tan(x) - sin(x)sec^{2}(x)(1) + -sin(x)sec^{2}(x) + cos(x)*2sec^{2}(x)tan(x)\\=&2cos(x)tan(x)sec^{2}(x) - 2sin(x)sec^{2}(x) - cos(x)tan(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 2cos(x)tan(x)sec^{2}(x) - 2sin(x)sec^{2}(x) - cos(x)tan(x)\right)}{dx}\\=&2*-sin(x)tan(x)sec^{2}(x) + 2cos(x)sec^{2}(x)(1)sec^{2}(x) + 2cos(x)tan(x)*2sec^{2}(x)tan(x) - 2cos(x)sec^{2}(x) - 2sin(x)*2sec^{2}(x)tan(x) - -sin(x)tan(x) - cos(x)sec^{2}(x)(1)\\=&-6sin(x)tan(x)sec^{2}(x) + 2cos(x)sec^{4}(x) + 4cos(x)tan^{2}(x)sec^{2}(x) - 3cos(x)sec^{2}(x) + sin(x)tan(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( -6sin(x)tan(x)sec^{2}(x) + 2cos(x)sec^{4}(x) + 4cos(x)tan^{2}(x)sec^{2}(x) - 3cos(x)sec^{2}(x) + sin(x)tan(x)\right)}{dx}\\=&-6cos(x)tan(x)sec^{2}(x) - 6sin(x)sec^{2}(x)(1)sec^{2}(x) - 6sin(x)tan(x)*2sec^{2}(x)tan(x) + 2*-sin(x)sec^{4}(x) + 2cos(x)*4sec^{4}(x)tan(x) + 4*-sin(x)tan^{2}(x)sec^{2}(x) + 4cos(x)*2tan(x)sec^{2}(x)(1)sec^{2}(x) + 4cos(x)tan^{2}(x)*2sec^{2}(x)tan(x) - 3*-sin(x)sec^{2}(x) - 3cos(x)*2sec^{2}(x)tan(x) + cos(x)tan(x) + sin(x)sec^{2}(x)(1)\\=&-12cos(x)tan(x)sec^{2}(x) - 8sin(x)sec^{4}(x) - 16sin(x)tan^{2}(x)sec^{2}(x) + 16cos(x)tan(x)sec^{4}(x) + 8cos(x)tan^{3}(x)sec^{2}(x) + 4sin(x)sec^{2}(x) + cos(x)tan(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!