本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数cos(tan(x)) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( cos(tan(x))\right)}{dx}\\=&-sin(tan(x))sec^{2}(x)(1)\\=&-sin(tan(x))sec^{2}(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( -sin(tan(x))sec^{2}(x)\right)}{dx}\\=&-cos(tan(x))sec^{2}(x)(1)sec^{2}(x) - sin(tan(x))*2sec^{2}(x)tan(x)\\=&-cos(tan(x))sec^{4}(x) - 2sin(tan(x))tan(x)sec^{2}(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( -cos(tan(x))sec^{4}(x) - 2sin(tan(x))tan(x)sec^{2}(x)\right)}{dx}\\=&--sin(tan(x))sec^{2}(x)(1)sec^{4}(x) - cos(tan(x))*4sec^{4}(x)tan(x) - 2cos(tan(x))sec^{2}(x)(1)tan(x)sec^{2}(x) - 2sin(tan(x))sec^{2}(x)(1)sec^{2}(x) - 2sin(tan(x))tan(x)*2sec^{2}(x)tan(x)\\=&sin(tan(x))sec^{6}(x) - 6cos(tan(x))tan(x)sec^{4}(x) - 2sin(tan(x))sec^{4}(x) - 4sin(tan(x))tan^{2}(x)sec^{2}(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( sin(tan(x))sec^{6}(x) - 6cos(tan(x))tan(x)sec^{4}(x) - 2sin(tan(x))sec^{4}(x) - 4sin(tan(x))tan^{2}(x)sec^{2}(x)\right)}{dx}\\=&cos(tan(x))sec^{2}(x)(1)sec^{6}(x) + sin(tan(x))*6sec^{6}(x)tan(x) - 6*-sin(tan(x))sec^{2}(x)(1)tan(x)sec^{4}(x) - 6cos(tan(x))sec^{2}(x)(1)sec^{4}(x) - 6cos(tan(x))tan(x)*4sec^{4}(x)tan(x) - 2cos(tan(x))sec^{2}(x)(1)sec^{4}(x) - 2sin(tan(x))*4sec^{4}(x)tan(x) - 4cos(tan(x))sec^{2}(x)(1)tan^{2}(x)sec^{2}(x) - 4sin(tan(x))*2tan(x)sec^{2}(x)(1)sec^{2}(x) - 4sin(tan(x))tan^{2}(x)*2sec^{2}(x)tan(x)\\=&cos(tan(x))sec^{8}(x) - 16sin(tan(x))tan(x)sec^{4}(x) + 12sin(tan(x))tan(x)sec^{6}(x) - 8cos(tan(x))sec^{6}(x) - 28cos(tan(x))tan^{2}(x)sec^{4}(x) - 8sin(tan(x))tan^{3}(x)sec^{2}(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!