本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sqrt(\frac{(x - 2)(x - 3)}{(x - 4)(x - 5)}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sqrt(\frac{x^{2}}{(x - 4)(x - 5)} - \frac{5x}{(x - 4)(x - 5)} + \frac{6}{(x - 4)(x - 5)})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sqrt(\frac{x^{2}}{(x - 4)(x - 5)} - \frac{5x}{(x - 4)(x - 5)} + \frac{6}{(x - 4)(x - 5)})\right)}{dx}\\=&\frac{(\frac{(\frac{-(1 + 0)}{(x - 4)^{2}})x^{2}}{(x - 5)} + \frac{(\frac{-(1 + 0)}{(x - 5)^{2}})x^{2}}{(x - 4)} + \frac{2x}{(x - 4)(x - 5)} - \frac{5(\frac{-(1 + 0)}{(x - 4)^{2}})x}{(x - 5)} - \frac{5(\frac{-(1 + 0)}{(x - 5)^{2}})x}{(x - 4)} - \frac{5}{(x - 4)(x - 5)} + \frac{6(\frac{-(1 + 0)}{(x - 4)^{2}})}{(x - 5)} + \frac{6(\frac{-(1 + 0)}{(x - 5)^{2}})}{(x - 4)})*\frac{1}{2}}{(\frac{x^{2}}{(x - 4)(x - 5)} - \frac{5x}{(x - 4)(x - 5)} + \frac{6}{(x - 4)(x - 5)})^{\frac{1}{2}}}\\=&\frac{-x^{2}}{2(x - 5)(x - 4)^{2}(\frac{x^{2}}{(x - 4)(x - 5)} - \frac{5x}{(x - 4)(x - 5)} + \frac{6}{(x - 4)(x - 5)})^{\frac{1}{2}}} - \frac{x^{2}}{2(x - 4)(x - 5)^{2}(\frac{x^{2}}{(x - 4)(x - 5)} - \frac{5x}{(x - 4)(x - 5)} + \frac{6}{(x - 4)(x - 5)})^{\frac{1}{2}}} + \frac{x}{(x - 4)(x - 5)(\frac{x^{2}}{(x - 4)(x - 5)} - \frac{5x}{(x - 4)(x - 5)} + \frac{6}{(x - 4)(x - 5)})^{\frac{1}{2}}} + \frac{5x}{2(x - 5)(x - 4)^{2}(\frac{x^{2}}{(x - 4)(x - 5)} - \frac{5x}{(x - 4)(x - 5)} + \frac{6}{(x - 4)(x - 5)})^{\frac{1}{2}}} + \frac{5x}{2(x - 4)(x - 5)^{2}(\frac{x^{2}}{(x - 4)(x - 5)} - \frac{5x}{(x - 4)(x - 5)} + \frac{6}{(x - 4)(x - 5)})^{\frac{1}{2}}} - \frac{3}{(x - 5)(x - 4)^{2}(\frac{x^{2}}{(x - 4)(x - 5)} - \frac{5x}{(x - 4)(x - 5)} + \frac{6}{(x - 4)(x - 5)})^{\frac{1}{2}}} - \frac{3}{(x - 4)(x - 5)^{2}(\frac{x^{2}}{(x - 4)(x - 5)} - \frac{5x}{(x - 4)(x - 5)} + \frac{6}{(x - 4)(x - 5)})^{\frac{1}{2}}} - \frac{5}{2(x - 5)(x - 4)(\frac{x^{2}}{(x - 4)(x - 5)} - \frac{5x}{(x - 4)(x - 5)} + \frac{6}{(x - 4)(x - 5)})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!