本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{x}{(1 + sqrt(xx))} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x}{(sqrt(x^{2}) + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x}{(sqrt(x^{2}) + 1)}\right)}{dx}\\=&(\frac{-(\frac{2x*\frac{1}{2}}{(x^{2})^{\frac{1}{2}}} + 0)}{(sqrt(x^{2}) + 1)^{2}})x + \frac{1}{(sqrt(x^{2}) + 1)}\\=&\frac{-x}{(sqrt(x^{2}) + 1)^{2}} + \frac{1}{(sqrt(x^{2}) + 1)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-x}{(sqrt(x^{2}) + 1)^{2}} + \frac{1}{(sqrt(x^{2}) + 1)}\right)}{dx}\\=&-(\frac{-2(\frac{2x*\frac{1}{2}}{(x^{2})^{\frac{1}{2}}} + 0)}{(sqrt(x^{2}) + 1)^{3}})x - \frac{1}{(sqrt(x^{2}) + 1)^{2}} + (\frac{-(\frac{2x*\frac{1}{2}}{(x^{2})^{\frac{1}{2}}} + 0)}{(sqrt(x^{2}) + 1)^{2}})\\=&\frac{2x}{(sqrt(x^{2}) + 1)^{3}} - \frac{2}{(sqrt(x^{2}) + 1)^{2}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{2x}{(sqrt(x^{2}) + 1)^{3}} - \frac{2}{(sqrt(x^{2}) + 1)^{2}}\right)}{dx}\\=&2(\frac{-3(\frac{2x*\frac{1}{2}}{(x^{2})^{\frac{1}{2}}} + 0)}{(sqrt(x^{2}) + 1)^{4}})x + \frac{2}{(sqrt(x^{2}) + 1)^{3}} - 2(\frac{-2(\frac{2x*\frac{1}{2}}{(x^{2})^{\frac{1}{2}}} + 0)}{(sqrt(x^{2}) + 1)^{3}})\\=&\frac{-6x}{(sqrt(x^{2}) + 1)^{4}} + \frac{6}{(sqrt(x^{2}) + 1)^{3}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{-6x}{(sqrt(x^{2}) + 1)^{4}} + \frac{6}{(sqrt(x^{2}) + 1)^{3}}\right)}{dx}\\=&-6(\frac{-4(\frac{2x*\frac{1}{2}}{(x^{2})^{\frac{1}{2}}} + 0)}{(sqrt(x^{2}) + 1)^{5}})x - \frac{6}{(sqrt(x^{2}) + 1)^{4}} + 6(\frac{-3(\frac{2x*\frac{1}{2}}{(x^{2})^{\frac{1}{2}}} + 0)}{(sqrt(x^{2}) + 1)^{4}})\\=&\frac{24x}{(sqrt(x^{2}) + 1)^{5}} - \frac{24}{(sqrt(x^{2}) + 1)^{4}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!