本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数e^{sqrt(x)} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( e^{sqrt(x)}\right)}{dx}\\=&\frac{e^{sqrt(x)}*\frac{1}{2}}{(x)^{\frac{1}{2}}}\\=&\frac{e^{sqrt(x)}}{2x^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{e^{sqrt(x)}}{2x^{\frac{1}{2}}}\right)}{dx}\\=&\frac{\frac{-1}{2}e^{sqrt(x)}}{2x^{\frac{3}{2}}} + \frac{e^{sqrt(x)}*\frac{1}{2}}{2x^{\frac{1}{2}}(x)^{\frac{1}{2}}}\\=&\frac{-e^{sqrt(x)}}{4x^{\frac{3}{2}}} + \frac{e^{sqrt(x)}}{4x}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-e^{sqrt(x)}}{4x^{\frac{3}{2}}} + \frac{e^{sqrt(x)}}{4x}\right)}{dx}\\=&\frac{-\frac{-3}{2}e^{sqrt(x)}}{4x^{\frac{5}{2}}} - \frac{e^{sqrt(x)}*\frac{1}{2}}{4x^{\frac{3}{2}}(x)^{\frac{1}{2}}} + \frac{-e^{sqrt(x)}}{4x^{2}} + \frac{e^{sqrt(x)}*\frac{1}{2}}{4x(x)^{\frac{1}{2}}}\\=&\frac{3e^{sqrt(x)}}{8x^{\frac{5}{2}}} - \frac{3e^{sqrt(x)}}{8x^{2}} + \frac{e^{sqrt(x)}}{8x^{\frac{3}{2}}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{3e^{sqrt(x)}}{8x^{\frac{5}{2}}} - \frac{3e^{sqrt(x)}}{8x^{2}} + \frac{e^{sqrt(x)}}{8x^{\frac{3}{2}}}\right)}{dx}\\=&\frac{3*\frac{-5}{2}e^{sqrt(x)}}{8x^{\frac{7}{2}}} + \frac{3e^{sqrt(x)}*\frac{1}{2}}{8x^{\frac{5}{2}}(x)^{\frac{1}{2}}} - \frac{3*-2e^{sqrt(x)}}{8x^{3}} - \frac{3e^{sqrt(x)}*\frac{1}{2}}{8x^{2}(x)^{\frac{1}{2}}} + \frac{\frac{-3}{2}e^{sqrt(x)}}{8x^{\frac{5}{2}}} + \frac{e^{sqrt(x)}*\frac{1}{2}}{8x^{\frac{3}{2}}(x)^{\frac{1}{2}}}\\=&\frac{-15e^{sqrt(x)}}{16x^{\frac{7}{2}}} + \frac{15e^{sqrt(x)}}{16x^{3}} - \frac{3e^{sqrt(x)}}{8x^{\frac{5}{2}}} + \frac{e^{sqrt(x)}}{16x^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!