本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{cos(x)}^{50} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = cos^{50}(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( cos^{50}(x)\right)}{dx}\\=&-50cos^{49}(x)sin(x)\\=&-50sin(x)cos^{49}(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( -50sin(x)cos^{49}(x)\right)}{dx}\\=&-50cos(x)cos^{49}(x) - 50sin(x)*-49cos^{48}(x)sin(x)\\=&-50cos^{50}(x) + 2450sin^{2}(x)cos^{48}(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( -50cos^{50}(x) + 2450sin^{2}(x)cos^{48}(x)\right)}{dx}\\=&-50*-50cos^{49}(x)sin(x) + 2450*2sin(x)cos(x)cos^{48}(x) + 2450sin^{2}(x)*-48cos^{47}(x)sin(x)\\=&7400sin(x)cos^{49}(x) - 117600sin^{3}(x)cos^{47}(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 7400sin(x)cos^{49}(x) - 117600sin^{3}(x)cos^{47}(x)\right)}{dx}\\=&7400cos(x)cos^{49}(x) + 7400sin(x)*-49cos^{48}(x)sin(x) - 117600*3sin^{2}(x)cos(x)cos^{47}(x) - 117600sin^{3}(x)*-47cos^{46}(x)sin(x)\\=&7400cos^{50}(x) - 715400sin^{2}(x)cos^{48}(x) + 5527200sin^{4}(x)cos^{46}(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!