数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{((cf - ah)(\frac{(-cc(gn + jl) - c(bhn + dg + bjm + dl) + bd(h + m))}{(cc(gk + fl) - c(bhk + agm + bfm + ahl) + 2abhm)}) + cj - d)}{(cg - bh)} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{-c^{3}fgn}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} - \frac{c^{3}fjl}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} - \frac{c^{2}fhnb}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} - \frac{c^{2}fgd}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} - \frac{c^{2}fjbm}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} - \frac{c^{2}fld}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} + \frac{cfhbd}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} + \frac{cfbdm}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} + \frac{c^{2}ahgn}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} + \frac{c^{2}ahjl}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} + \frac{cah^{2}nb}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} + \frac{cahgd}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} + \frac{cahjbm}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} + \frac{cahld}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} - \frac{ahbdm}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} - \frac{ah^{2}bd}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} + \frac{cj}{(cg - hb)} - \frac{d}{(cg - hb)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{-c^{3}fgn}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} - \frac{c^{3}fjl}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} - \frac{c^{2}fhnb}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} - \frac{c^{2}fgd}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} - \frac{c^{2}fjbm}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} - \frac{c^{2}fld}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} + \frac{cfhbd}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} + \frac{cfbdm}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} + \frac{c^{2}ahgn}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} + \frac{c^{2}ahjl}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} + \frac{cah^{2}nb}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} + \frac{cahgd}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} + \frac{cahjbm}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} + \frac{cahld}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} - \frac{ahbdm}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} - \frac{ah^{2}bd}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)(cg - hb)} + \frac{cj}{(cg - hb)} - \frac{d}{(cg - hb)}\right)}{dx}\\=&\frac{-(\frac{-(0 + 0 + 0 + 0 + 0 + 0 + 0)}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)^{2}})c^{3}fgn}{(cg - hb)} - \frac{(\frac{-(0 + 0)}{(cg - hb)^{2}})c^{3}fgn}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)} + 0 - \frac{(\frac{-(0 + 0 + 0 + 0 + 0 + 0 + 0)}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)^{2}})c^{3}fjl}{(cg - hb)} - \frac{(\frac{-(0 + 0)}{(cg - hb)^{2}})c^{3}fjl}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)} + 0 - \frac{(\frac{-(0 + 0 + 0 + 0 + 0 + 0 + 0)}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)^{2}})c^{2}fhnb}{(cg - hb)} - \frac{(\frac{-(0 + 0)}{(cg - hb)^{2}})c^{2}fhnb}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)} + 0 - \frac{(\frac{-(0 + 0 + 0 + 0 + 0 + 0 + 0)}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)^{2}})c^{2}fgd}{(cg - hb)} - \frac{(\frac{-(0 + 0)}{(cg - hb)^{2}})c^{2}fgd}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)} + 0 - \frac{(\frac{-(0 + 0 + 0 + 0 + 0 + 0 + 0)}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)^{2}})c^{2}fjbm}{(cg - hb)} - \frac{(\frac{-(0 + 0)}{(cg - hb)^{2}})c^{2}fjbm}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)} + 0 - \frac{(\frac{-(0 + 0 + 0 + 0 + 0 + 0 + 0)}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)^{2}})c^{2}fld}{(cg - hb)} - \frac{(\frac{-(0 + 0)}{(cg - hb)^{2}})c^{2}fld}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)} + 0 + \frac{(\frac{-(0 + 0 + 0 + 0 + 0 + 0 + 0)}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)^{2}})cfhbd}{(cg - hb)} + \frac{(\frac{-(0 + 0)}{(cg - hb)^{2}})cfhbd}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)} + 0 + \frac{(\frac{-(0 + 0 + 0 + 0 + 0 + 0 + 0)}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)^{2}})cfbdm}{(cg - hb)} + \frac{(\frac{-(0 + 0)}{(cg - hb)^{2}})cfbdm}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)} + 0 + \frac{(\frac{-(0 + 0 + 0 + 0 + 0 + 0 + 0)}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)^{2}})c^{2}ahgn}{(cg - hb)} + \frac{(\frac{-(0 + 0)}{(cg - hb)^{2}})c^{2}ahgn}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)} + 0 + \frac{(\frac{-(0 + 0 + 0 + 0 + 0 + 0 + 0)}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)^{2}})c^{2}ahjl}{(cg - hb)} + \frac{(\frac{-(0 + 0)}{(cg - hb)^{2}})c^{2}ahjl}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)} + 0 + \frac{(\frac{-(0 + 0 + 0 + 0 + 0 + 0 + 0)}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)^{2}})cah^{2}nb}{(cg - hb)} + \frac{(\frac{-(0 + 0)}{(cg - hb)^{2}})cah^{2}nb}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)} + 0 + \frac{(\frac{-(0 + 0 + 0 + 0 + 0 + 0 + 0)}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)^{2}})cahgd}{(cg - hb)} + \frac{(\frac{-(0 + 0)}{(cg - hb)^{2}})cahgd}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)} + 0 + \frac{(\frac{-(0 + 0 + 0 + 0 + 0 + 0 + 0)}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)^{2}})cahjbm}{(cg - hb)} + \frac{(\frac{-(0 + 0)}{(cg - hb)^{2}})cahjbm}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)} + 0 + \frac{(\frac{-(0 + 0 + 0 + 0 + 0 + 0 + 0)}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)^{2}})cahld}{(cg - hb)} + \frac{(\frac{-(0 + 0)}{(cg - hb)^{2}})cahld}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)} + 0 - \frac{(\frac{-(0 + 0 + 0 + 0 + 0 + 0 + 0)}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)^{2}})ahbdm}{(cg - hb)} - \frac{(\frac{-(0 + 0)}{(cg - hb)^{2}})ahbdm}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)} + 0 - \frac{(\frac{-(0 + 0 + 0 + 0 + 0 + 0 + 0)}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)^{2}})ah^{2}bd}{(cg - hb)} - \frac{(\frac{-(0 + 0)}{(cg - hb)^{2}})ah^{2}bd}{(c^{2}gk + c^{2}fl - chbk - cagm - cfbm - cahl + 2ahbm)} + 0 + (\frac{-(0 + 0)}{(cg - hb)^{2}})cj + 0 - (\frac{-(0 + 0)}{(cg - hb)^{2}})d + 0\\=&0\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。