本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{sin(x)}^{23456789} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sin^{23456789}(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sin^{23456789}(x)\right)}{dx}\\=&23456789sin^{23456788}(x)cos(x)\\=&23456789sin^{23456788}(x)cos(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 23456789sin^{23456788}(x)cos(x)\right)}{dx}\\=&23456789*23456788sin^{23456787}(x)cos(x)cos(x) + 23456789sin^{23456788}(x)*-sin(x)\\=&550220926733732sin^{23456787}(x)cos^{2}(x) - 23456789sin^{23456789}(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 550220926733732sin^{23456787}(x)cos^{2}(x) - 23456789sin^{23456789}(x)\right)}{dx}\\=&550220926733732*23456787sin^{23456786}(x)cos(x)cos^{2}(x) + 550220926733732sin^{23456787}(x)*-2cos(x)sin(x) - 23456789*23456789sin^{23456788}(x)cos(x)\\=&-6305770260928892116sin^{23456786}(x)cos^{3}(x) - 1650662803657985sin^{23456788}(x)cos(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( -6305770260928892116sin^{23456786}(x)cos^{3}(x) - 1650662803657985sin^{23456788}(x)cos(x)\right)}{dx}\\=&-6305770260928892116*23456786sin^{23456785}(x)cos(x)cos^{3}(x) - 6305770260928892116sin^{23456786}(x)*-3cos^{2}(x)sin(x) - 1650662803657985*23456788sin^{23456787}(x)cos(x)cos(x) - 1650662803657985sin^{23456788}(x)*-sin(x)\\=&-7596301620547639016sin^{23456785}(x)cos^{4}(x) + 938932534447314536sin^{23456787}(x)cos^{2}(x) + 1650662803657985sin^{23456789}(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!