本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(1400(1080 - \frac{67}{10}x - 48))}{(x(\frac{129}{5} - \frac{1}{5}x))} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{-9380x}{(\frac{-1}{5}x^{2} + \frac{129}{5}x)} + \frac{1444800}{(\frac{-1}{5}x^{2} + \frac{129}{5}x)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{-9380x}{(\frac{-1}{5}x^{2} + \frac{129}{5}x)} + \frac{1444800}{(\frac{-1}{5}x^{2} + \frac{129}{5}x)}\right)}{dx}\\=&-9380(\frac{-(\frac{-1}{5}*2x + \frac{129}{5})}{(\frac{-1}{5}x^{2} + \frac{129}{5}x)^{2}})x - \frac{9380}{(\frac{-1}{5}x^{2} + \frac{129}{5}x)} + 1444800(\frac{-(\frac{-1}{5}*2x + \frac{129}{5})}{(\frac{-1}{5}x^{2} + \frac{129}{5}x)^{2}})\\=&\frac{-3752x^{2}}{(\frac{-1}{5}x^{2} + \frac{129}{5}x)^{2}} + \frac{819924x}{(\frac{-1}{5}x^{2} + \frac{129}{5}x)^{2}} - \frac{9380}{(\frac{-1}{5}x^{2} + \frac{129}{5}x)} - \frac{37275840}{(\frac{-1}{5}x^{2} + \frac{129}{5}x)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!