数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 t 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{dn}{(4e^{\frac{1}{5}t}dt + 2t)} 关于 t 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{dn}{(4dte^{\frac{1}{5}t} + 2t)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{dn}{(4dte^{\frac{1}{5}t} + 2t)}\right)}{dt}\\=&(\frac{-(4de^{\frac{1}{5}t} + 4dte^{\frac{1}{5}t}*\frac{1}{5} + 2)}{(4dte^{\frac{1}{5}t} + 2t)^{2}})dn + 0\\=&\frac{-4d^{2}ne^{\frac{1}{5}t}}{(4dte^{\frac{1}{5}t} + 2t)^{2}} - \frac{4d^{2}nte^{\frac{1}{5}t}}{5(4dte^{\frac{1}{5}t} + 2t)^{2}} - \frac{2dn}{(4dte^{\frac{1}{5}t} + 2t)^{2}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-4d^{2}ne^{\frac{1}{5}t}}{(4dte^{\frac{1}{5}t} + 2t)^{2}} - \frac{4d^{2}nte^{\frac{1}{5}t}}{5(4dte^{\frac{1}{5}t} + 2t)^{2}} - \frac{2dn}{(4dte^{\frac{1}{5}t} + 2t)^{2}}\right)}{dt}\\=&-4(\frac{-2(4de^{\frac{1}{5}t} + 4dte^{\frac{1}{5}t}*\frac{1}{5} + 2)}{(4dte^{\frac{1}{5}t} + 2t)^{3}})d^{2}ne^{\frac{1}{5}t} - \frac{4d^{2}ne^{\frac{1}{5}t}*\frac{1}{5}}{(4dte^{\frac{1}{5}t} + 2t)^{2}} - \frac{4(\frac{-2(4de^{\frac{1}{5}t} + 4dte^{\frac{1}{5}t}*\frac{1}{5} + 2)}{(4dte^{\frac{1}{5}t} + 2t)^{3}})d^{2}nte^{\frac{1}{5}t}}{5} - \frac{4d^{2}ne^{\frac{1}{5}t}}{5(4dte^{\frac{1}{5}t} + 2t)^{2}} - \frac{4d^{2}nte^{\frac{1}{5}t}*\frac{1}{5}}{5(4dte^{\frac{1}{5}t} + 2t)^{2}} - 2(\frac{-2(4de^{\frac{1}{5}t} + 4dte^{\frac{1}{5}t}*\frac{1}{5} + 2)}{(4dte^{\frac{1}{5}t} + 2t)^{3}})dn + 0\\=&\frac{32d^{3}ne^{{\frac{1}{5}t}*{2}}}{(4dte^{\frac{1}{5}t} + 2t)^{3}} + \frac{64d^{3}nte^{{\frac{1}{5}t}*{2}}}{5(4dte^{\frac{1}{5}t} + 2t)^{3}} + \frac{32d^{2}ne^{\frac{1}{5}t}}{(4dte^{\frac{1}{5}t} + 2t)^{3}} - \frac{8d^{2}ne^{\frac{1}{5}t}}{5(4dte^{\frac{1}{5}t} + 2t)^{2}} + \frac{32d^{3}nt^{2}e^{{\frac{1}{5}t}*{2}}}{25(4dte^{\frac{1}{5}t} + 2t)^{3}} + \frac{32d^{2}nte^{\frac{1}{5}t}}{5(4dte^{\frac{1}{5}t} + 2t)^{3}} - \frac{4d^{2}nte^{\frac{1}{5}t}}{25(4dte^{\frac{1}{5}t} + 2t)^{2}} + \frac{8dn}{(4dte^{\frac{1}{5}t} + 2t)^{3}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{32d^{3}ne^{{\frac{1}{5}t}*{2}}}{(4dte^{\frac{1}{5}t} + 2t)^{3}} + \frac{64d^{3}nte^{{\frac{1}{5}t}*{2}}}{5(4dte^{\frac{1}{5}t} + 2t)^{3}} + \frac{32d^{2}ne^{\frac{1}{5}t}}{(4dte^{\frac{1}{5}t} + 2t)^{3}} - \frac{8d^{2}ne^{\frac{1}{5}t}}{5(4dte^{\frac{1}{5}t} + 2t)^{2}} + \frac{32d^{3}nt^{2}e^{{\frac{1}{5}t}*{2}}}{25(4dte^{\frac{1}{5}t} + 2t)^{3}} + \frac{32d^{2}nte^{\frac{1}{5}t}}{5(4dte^{\frac{1}{5}t} + 2t)^{3}} - \frac{4d^{2}nte^{\frac{1}{5}t}}{25(4dte^{\frac{1}{5}t} + 2t)^{2}} + \frac{8dn}{(4dte^{\frac{1}{5}t} + 2t)^{3}}\right)}{dt}\\=&32(\frac{-3(4de^{\frac{1}{5}t} + 4dte^{\frac{1}{5}t}*\frac{1}{5} + 2)}{(4dte^{\frac{1}{5}t} + 2t)^{4}})d^{3}ne^{{\frac{1}{5}t}*{2}} + \frac{32d^{3}n*2e^{\frac{1}{5}t}e^{\frac{1}{5}t}*\frac{1}{5}}{(4dte^{\frac{1}{5}t} + 2t)^{3}} + \frac{64(\frac{-3(4de^{\frac{1}{5}t} + 4dte^{\frac{1}{5}t}*\frac{1}{5} + 2)}{(4dte^{\frac{1}{5}t} + 2t)^{4}})d^{3}nte^{{\frac{1}{5}t}*{2}}}{5} + \frac{64d^{3}ne^{{\frac{1}{5}t}*{2}}}{5(4dte^{\frac{1}{5}t} + 2t)^{3}} + \frac{64d^{3}nt*2e^{\frac{1}{5}t}e^{\frac{1}{5}t}*\frac{1}{5}}{5(4dte^{\frac{1}{5}t} + 2t)^{3}} + 32(\frac{-3(4de^{\frac{1}{5}t} + 4dte^{\frac{1}{5}t}*\frac{1}{5} + 2)}{(4dte^{\frac{1}{5}t} + 2t)^{4}})d^{2}ne^{\frac{1}{5}t} + \frac{32d^{2}ne^{\frac{1}{5}t}*\frac{1}{5}}{(4dte^{\frac{1}{5}t} + 2t)^{3}} - \frac{8(\frac{-2(4de^{\frac{1}{5}t} + 4dte^{\frac{1}{5}t}*\frac{1}{5} + 2)}{(4dte^{\frac{1}{5}t} + 2t)^{3}})d^{2}ne^{\frac{1}{5}t}}{5} - \frac{8d^{2}ne^{\frac{1}{5}t}*\frac{1}{5}}{5(4dte^{\frac{1}{5}t} + 2t)^{2}} + \frac{32(\frac{-3(4de^{\frac{1}{5}t} + 4dte^{\frac{1}{5}t}*\frac{1}{5} + 2)}{(4dte^{\frac{1}{5}t} + 2t)^{4}})d^{3}nt^{2}e^{{\frac{1}{5}t}*{2}}}{25} + \frac{32d^{3}n*2te^{{\frac{1}{5}t}*{2}}}{25(4dte^{\frac{1}{5}t} + 2t)^{3}} + \frac{32d^{3}nt^{2}*2e^{\frac{1}{5}t}e^{\frac{1}{5}t}*\frac{1}{5}}{25(4dte^{\frac{1}{5}t} + 2t)^{3}} + \frac{32(\frac{-3(4de^{\frac{1}{5}t} + 4dte^{\frac{1}{5}t}*\frac{1}{5} + 2)}{(4dte^{\frac{1}{5}t} + 2t)^{4}})d^{2}nte^{\frac{1}{5}t}}{5} + \frac{32d^{2}ne^{\frac{1}{5}t}}{5(4dte^{\frac{1}{5}t} + 2t)^{3}} + \frac{32d^{2}nte^{\frac{1}{5}t}*\frac{1}{5}}{5(4dte^{\frac{1}{5}t} + 2t)^{3}} - \frac{4(\frac{-2(4de^{\frac{1}{5}t} + 4dte^{\frac{1}{5}t}*\frac{1}{5} + 2)}{(4dte^{\frac{1}{5}t} + 2t)^{3}})d^{2}nte^{\frac{1}{5}t}}{25} - \frac{4d^{2}ne^{\frac{1}{5}t}}{25(4dte^{\frac{1}{5}t} + 2t)^{2}} - \frac{4d^{2}nte^{\frac{1}{5}t}*\frac{1}{5}}{25(4dte^{\frac{1}{5}t} + 2t)^{2}} + 8(\frac{-3(4de^{\frac{1}{5}t} + 4dte^{\frac{1}{5}t}*\frac{1}{5} + 2)}{(4dte^{\frac{1}{5}t} + 2t)^{4}})dn + 0\\=&\frac{-384d^{4}ne^{{\frac{1}{5}t}*{3}}}{(4dte^{\frac{1}{5}t} + 2t)^{4}} - \frac{1152d^{4}nte^{{\frac{1}{5}t}*{3}}}{5(4dte^{\frac{1}{5}t} + 2t)^{4}} - \frac{576d^{3}ne^{{\frac{1}{5}t}*{2}}}{(4dte^{\frac{1}{5}t} + 2t)^{4}} + \frac{192d^{3}ne^{{\frac{1}{5}t}*{2}}}{5(4dte^{\frac{1}{5}t} + 2t)^{3}} - \frac{1152d^{4}nt^{2}e^{{\frac{1}{5}t}*{3}}}{25(4dte^{\frac{1}{5}t} + 2t)^{4}} - \frac{1152d^{3}nte^{{\frac{1}{5}t}*{2}}}{5(4dte^{\frac{1}{5}t} + 2t)^{4}} + \frac{288d^{3}nte^{{\frac{1}{5}t}*{2}}}{25(4dte^{\frac{1}{5}t} + 2t)^{3}} - \frac{288d^{2}ne^{\frac{1}{5}t}}{(4dte^{\frac{1}{5}t} + 2t)^{4}} + \frac{96d^{2}ne^{\frac{1}{5}t}}{5(4dte^{\frac{1}{5}t} + 2t)^{3}} - \frac{12d^{2}ne^{\frac{1}{5}t}}{25(4dte^{\frac{1}{5}t} + 2t)^{2}} - \frac{384d^{4}nt^{3}e^{{\frac{1}{5}t}*{3}}}{125(4dte^{\frac{1}{5}t} + 2t)^{4}} - \frac{576d^{3}nt^{2}e^{{\frac{1}{5}t}*{2}}}{25(4dte^{\frac{1}{5}t} + 2t)^{4}} + \frac{96d^{3}nt^{2}e^{{\frac{1}{5}t}*{2}}}{125(4dte^{\frac{1}{5}t} + 2t)^{3}} - \frac{288d^{2}nte^{\frac{1}{5}t}}{5(4dte^{\frac{1}{5}t} + 2t)^{4}} + \frac{48d^{2}nte^{\frac{1}{5}t}}{25(4dte^{\frac{1}{5}t} + 2t)^{3}} - \frac{4d^{2}nte^{\frac{1}{5}t}}{125(4dte^{\frac{1}{5}t} + 2t)^{2}} - \frac{48dn}{(4dte^{\frac{1}{5}t} + 2t)^{4}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{-384d^{4}ne^{{\frac{1}{5}t}*{3}}}{(4dte^{\frac{1}{5}t} + 2t)^{4}} - \frac{1152d^{4}nte^{{\frac{1}{5}t}*{3}}}{5(4dte^{\frac{1}{5}t} + 2t)^{4}} - \frac{576d^{3}ne^{{\frac{1}{5}t}*{2}}}{(4dte^{\frac{1}{5}t} + 2t)^{4}} + \frac{192d^{3}ne^{{\frac{1}{5}t}*{2}}}{5(4dte^{\frac{1}{5}t} + 2t)^{3}} - \frac{1152d^{4}nt^{2}e^{{\frac{1}{5}t}*{3}}}{25(4dte^{\frac{1}{5}t} + 2t)^{4}} - \frac{1152d^{3}nte^{{\frac{1}{5}t}*{2}}}{5(4dte^{\frac{1}{5}t} + 2t)^{4}} + \frac{288d^{3}nte^{{\frac{1}{5}t}*{2}}}{25(4dte^{\frac{1}{5}t} + 2t)^{3}} - \frac{288d^{2}ne^{\frac{1}{5}t}}{(4dte^{\frac{1}{5}t} + 2t)^{4}} + \frac{96d^{2}ne^{\frac{1}{5}t}}{5(4dte^{\frac{1}{5}t} + 2t)^{3}} - \frac{12d^{2}ne^{\frac{1}{5}t}}{25(4dte^{\frac{1}{5}t} + 2t)^{2}} - \frac{384d^{4}nt^{3}e^{{\frac{1}{5}t}*{3}}}{125(4dte^{\frac{1}{5}t} + 2t)^{4}} - \frac{576d^{3}nt^{2}e^{{\frac{1}{5}t}*{2}}}{25(4dte^{\frac{1}{5}t} + 2t)^{4}} + \frac{96d^{3}nt^{2}e^{{\frac{1}{5}t}*{2}}}{125(4dte^{\frac{1}{5}t} + 2t)^{3}} - \frac{288d^{2}nte^{\frac{1}{5}t}}{5(4dte^{\frac{1}{5}t} + 2t)^{4}} + \frac{48d^{2}nte^{\frac{1}{5}t}}{25(4dte^{\frac{1}{5}t} + 2t)^{3}} - \frac{4d^{2}nte^{\frac{1}{5}t}}{125(4dte^{\frac{1}{5}t} + 2t)^{2}} - \frac{48dn}{(4dte^{\frac{1}{5}t} + 2t)^{4}}\right)}{dt}\\=&-384(\frac{-4(4de^{\frac{1}{5}t} + 4dte^{\frac{1}{5}t}*\frac{1}{5} + 2)}{(4dte^{\frac{1}{5}t} + 2t)^{5}})d^{4}ne^{{\frac{1}{5}t}*{3}} - \frac{384d^{4}n*3e^{{\frac{1}{5}t}*{2}}e^{\frac{1}{5}t}*\frac{1}{5}}{(4dte^{\frac{1}{5}t} + 2t)^{4}} - \frac{1152(\frac{-4(4de^{\frac{1}{5}t} + 4dte^{\frac{1}{5}t}*\frac{1}{5} + 2)}{(4dte^{\frac{1}{5}t} + 2t)^{5}})d^{4}nte^{{\frac{1}{5}t}*{3}}}{5} - \frac{1152d^{4}ne^{{\frac{1}{5}t}*{3}}}{5(4dte^{\frac{1}{5}t} + 2t)^{4}} - \frac{1152d^{4}nt*3e^{{\frac{1}{5}t}*{2}}e^{\frac{1}{5}t}*\frac{1}{5}}{5(4dte^{\frac{1}{5}t} + 2t)^{4}} - 576(\frac{-4(4de^{\frac{1}{5}t} + 4dte^{\frac{1}{5}t}*\frac{1}{5} + 2)}{(4dte^{\frac{1}{5}t} + 2t)^{5}})d^{3}ne^{{\frac{1}{5}t}*{2}} - \frac{576d^{3}n*2e^{\frac{1}{5}t}e^{\frac{1}{5}t}*\frac{1}{5}}{(4dte^{\frac{1}{5}t} + 2t)^{4}} + \frac{192(\frac{-3(4de^{\frac{1}{5}t} + 4dte^{\frac{1}{5}t}*\frac{1}{5} + 2)}{(4dte^{\frac{1}{5}t} + 2t)^{4}})d^{3}ne^{{\frac{1}{5}t}*{2}}}{5} + \frac{192d^{3}n*2e^{\frac{1}{5}t}e^{\frac{1}{5}t}*\frac{1}{5}}{5(4dte^{\frac{1}{5}t} + 2t)^{3}} - \frac{1152(\frac{-4(4de^{\frac{1}{5}t} + 4dte^{\frac{1}{5}t}*\frac{1}{5} + 2)}{(4dte^{\frac{1}{5}t} + 2t)^{5}})d^{4}nt^{2}e^{{\frac{1}{5}t}*{3}}}{25} - \frac{1152d^{4}n*2te^{{\frac{1}{5}t}*{3}}}{25(4dte^{\frac{1}{5}t} + 2t)^{4}} - \frac{1152d^{4}nt^{2}*3e^{{\frac{1}{5}t}*{2}}e^{\frac{1}{5}t}*\frac{1}{5}}{25(4dte^{\frac{1}{5}t} + 2t)^{4}} - \frac{1152(\frac{-4(4de^{\frac{1}{5}t} + 4dte^{\frac{1}{5}t}*\frac{1}{5} + 2)}{(4dte^{\frac{1}{5}t} + 2t)^{5}})d^{3}nte^{{\frac{1}{5}t}*{2}}}{5} - \frac{1152d^{3}ne^{{\frac{1}{5}t}*{2}}}{5(4dte^{\frac{1}{5}t} + 2t)^{4}} - \frac{1152d^{3}nt*2e^{\frac{1}{5}t}e^{\frac{1}{5}t}*\frac{1}{5}}{5(4dte^{\frac{1}{5}t} + 2t)^{4}} + \frac{288(\frac{-3(4de^{\frac{1}{5}t} + 4dte^{\frac{1}{5}t}*\frac{1}{5} + 2)}{(4dte^{\frac{1}{5}t} + 2t)^{4}})d^{3}nte^{{\frac{1}{5}t}*{2}}}{25} + \frac{288d^{3}ne^{{\frac{1}{5}t}*{2}}}{25(4dte^{\frac{1}{5}t} + 2t)^{3}} + \frac{288d^{3}nt*2e^{\frac{1}{5}t}e^{\frac{1}{5}t}*\frac{1}{5}}{25(4dte^{\frac{1}{5}t} + 2t)^{3}} - 288(\frac{-4(4de^{\frac{1}{5}t} + 4dte^{\frac{1}{5}t}*\frac{1}{5} + 2)}{(4dte^{\frac{1}{5}t} + 2t)^{5}})d^{2}ne^{\frac{1}{5}t} - \frac{288d^{2}ne^{\frac{1}{5}t}*\frac{1}{5}}{(4dte^{\frac{1}{5}t} + 2t)^{4}} + \frac{96(\frac{-3(4de^{\frac{1}{5}t} + 4dte^{\frac{1}{5}t}*\frac{1}{5} + 2)}{(4dte^{\frac{1}{5}t} + 2t)^{4}})d^{2}ne^{\frac{1}{5}t}}{5} + \frac{96d^{2}ne^{\frac{1}{5}t}*\frac{1}{5}}{5(4dte^{\frac{1}{5}t} + 2t)^{3}} - \frac{12(\frac{-2(4de^{\frac{1}{5}t} + 4dte^{\frac{1}{5}t}*\frac{1}{5} + 2)}{(4dte^{\frac{1}{5}t} + 2t)^{3}})d^{2}ne^{\frac{1}{5}t}}{25} - \frac{12d^{2}ne^{\frac{1}{5}t}*\frac{1}{5}}{25(4dte^{\frac{1}{5}t} + 2t)^{2}} - \frac{384(\frac{-4(4de^{\frac{1}{5}t} + 4dte^{\frac{1}{5}t}*\frac{1}{5} + 2)}{(4dte^{\frac{1}{5}t} + 2t)^{5}})d^{4}nt^{3}e^{{\frac{1}{5}t}*{3}}}{125} - \frac{384d^{4}n*3t^{2}e^{{\frac{1}{5}t}*{3}}}{125(4dte^{\frac{1}{5}t} + 2t)^{4}} - \frac{384d^{4}nt^{3}*3e^{{\frac{1}{5}t}*{2}}e^{\frac{1}{5}t}*\frac{1}{5}}{125(4dte^{\frac{1}{5}t} + 2t)^{4}} - \frac{576(\frac{-4(4de^{\frac{1}{5}t} + 4dte^{\frac{1}{5}t}*\frac{1}{5} + 2)}{(4dte^{\frac{1}{5}t} + 2t)^{5}})d^{3}nt^{2}e^{{\frac{1}{5}t}*{2}}}{25} - \frac{576d^{3}n*2te^{{\frac{1}{5}t}*{2}}}{25(4dte^{\frac{1}{5}t} + 2t)^{4}} - \frac{576d^{3}nt^{2}*2e^{\frac{1}{5}t}e^{\frac{1}{5}t}*\frac{1}{5}}{25(4dte^{\frac{1}{5}t} + 2t)^{4}} + \frac{96(\frac{-3(4de^{\frac{1}{5}t} + 4dte^{\frac{1}{5}t}*\frac{1}{5} + 2)}{(4dte^{\frac{1}{5}t} + 2t)^{4}})d^{3}nt^{2}e^{{\frac{1}{5}t}*{2}}}{125} + \frac{96d^{3}n*2te^{{\frac{1}{5}t}*{2}}}{125(4dte^{\frac{1}{5}t} + 2t)^{3}} + \frac{96d^{3}nt^{2}*2e^{\frac{1}{5}t}e^{\frac{1}{5}t}*\frac{1}{5}}{125(4dte^{\frac{1}{5}t} + 2t)^{3}} - \frac{288(\frac{-4(4de^{\frac{1}{5}t} + 4dte^{\frac{1}{5}t}*\frac{1}{5} + 2)}{(4dte^{\frac{1}{5}t} + 2t)^{5}})d^{2}nte^{\frac{1}{5}t}}{5} - \frac{288d^{2}ne^{\frac{1}{5}t}}{5(4dte^{\frac{1}{5}t} + 2t)^{4}} - \frac{288d^{2}nte^{\frac{1}{5}t}*\frac{1}{5}}{5(4dte^{\frac{1}{5}t} + 2t)^{4}} + \frac{48(\frac{-3(4de^{\frac{1}{5}t} + 4dte^{\frac{1}{5}t}*\frac{1}{5} + 2)}{(4dte^{\frac{1}{5}t} + 2t)^{4}})d^{2}nte^{\frac{1}{5}t}}{25} + \frac{48d^{2}ne^{\frac{1}{5}t}}{25(4dte^{\frac{1}{5}t} + 2t)^{3}} + \frac{48d^{2}nte^{\frac{1}{5}t}*\frac{1}{5}}{25(4dte^{\frac{1}{5}t} + 2t)^{3}} - \frac{4(\frac{-2(4de^{\frac{1}{5}t} + 4dte^{\frac{1}{5}t}*\frac{1}{5} + 2)}{(4dte^{\frac{1}{5}t} + 2t)^{3}})d^{2}nte^{\frac{1}{5}t}}{125} - \frac{4d^{2}ne^{\frac{1}{5}t}}{125(4dte^{\frac{1}{5}t} + 2t)^{2}} - \frac{4d^{2}nte^{\frac{1}{5}t}*\frac{1}{5}}{125(4dte^{\frac{1}{5}t} + 2t)^{2}} - 48(\frac{-4(4de^{\frac{1}{5}t} + 4dte^{\frac{1}{5}t}*\frac{1}{5} + 2)}{(4dte^{\frac{1}{5}t} + 2t)^{5}})dn + 0\\=&\frac{6144d^{5}ne^{{\frac{1}{5}t}*{4}}}{(4dte^{\frac{1}{5}t} + 2t)^{5}} + \frac{24576d^{5}nte^{{\frac{1}{5}t}*{4}}}{5(4dte^{\frac{1}{5}t} + 2t)^{5}} + \frac{12288d^{4}ne^{{\frac{1}{5}t}*{3}}}{(4dte^{\frac{1}{5}t} + 2t)^{5}} - \frac{4608d^{4}ne^{{\frac{1}{5}t}*{3}}}{5(4dte^{\frac{1}{5}t} + 2t)^{4}} + \frac{36864d^{5}nt^{2}e^{{\frac{1}{5}t}*{4}}}{25(4dte^{\frac{1}{5}t} + 2t)^{5}} + \frac{36864d^{4}nte^{{\frac{1}{5}t}*{3}}}{5(4dte^{\frac{1}{5}t} + 2t)^{5}} - \frac{2304d^{4}nte^{{\frac{1}{5}t}*{3}}}{5(4dte^{\frac{1}{5}t} + 2t)^{4}} + \frac{9216d^{3}ne^{{\frac{1}{5}t}*{2}}}{(4dte^{\frac{1}{5}t} + 2t)^{5}} - \frac{4608d^{3}ne^{{\frac{1}{5}t}*{2}}}{5(4dte^{\frac{1}{5}t} + 2t)^{4}} + \frac{768d^{3}ne^{{\frac{1}{5}t}*{2}}}{25(4dte^{\frac{1}{5}t} + 2t)^{3}} + \frac{24576d^{5}nt^{3}e^{{\frac{1}{5}t}*{4}}}{125(4dte^{\frac{1}{5}t} + 2t)^{5}} + \frac{36864d^{4}nt^{2}e^{{\frac{1}{5}t}*{3}}}{25(4dte^{\frac{1}{5}t} + 2t)^{5}} - \frac{9216d^{4}nt^{2}e^{{\frac{1}{5}t}*{3}}}{125(4dte^{\frac{1}{5}t} + 2t)^{4}} + \frac{18432d^{3}nte^{{\frac{1}{5}t}*{2}}}{5(4dte^{\frac{1}{5}t} + 2t)^{5}} - \frac{6912d^{3}nte^{{\frac{1}{5}t}*{2}}}{25(4dte^{\frac{1}{5}t} + 2t)^{4}} + \frac{896d^{3}nte^{{\frac{1}{5}t}*{2}}}{125(4dte^{\frac{1}{5}t} + 2t)^{3}} + \frac{3072d^{2}ne^{\frac{1}{5}t}}{(4dte^{\frac{1}{5}t} + 2t)^{5}} - \frac{1152d^{2}ne^{\frac{1}{5}t}}{5(4dte^{\frac{1}{5}t} + 2t)^{4}} + \frac{192d^{2}ne^{\frac{1}{5}t}}{25(4dte^{\frac{1}{5}t} + 2t)^{3}} - \frac{16d^{2}ne^{\frac{1}{5}t}}{125(4dte^{\frac{1}{5}t} + 2t)^{2}} + \frac{6144d^{5}nt^{4}e^{{\frac{1}{5}t}*{4}}}{625(4dte^{\frac{1}{5}t} + 2t)^{5}} + \frac{12288d^{4}nt^{3}e^{{\frac{1}{5}t}*{3}}}{125(4dte^{\frac{1}{5}t} + 2t)^{5}} - \frac{2304d^{4}nt^{3}e^{{\frac{1}{5}t}*{3}}}{625(4dte^{\frac{1}{5}t} + 2t)^{4}} + \frac{9216d^{3}nt^{2}e^{{\frac{1}{5}t}*{2}}}{25(4dte^{\frac{1}{5}t} + 2t)^{5}} - \frac{2304d^{3}nt^{2}e^{{\frac{1}{5}t}*{2}}}{125(4dte^{\frac{1}{5}t} + 2t)^{4}} + \frac{224d^{3}nt^{2}e^{{\frac{1}{5}t}*{2}}}{625(4dte^{\frac{1}{5}t} + 2t)^{3}} + \frac{3072d^{2}nte^{\frac{1}{5}t}}{5(4dte^{\frac{1}{5}t} + 2t)^{5}} - \frac{576d^{2}nte^{\frac{1}{5}t}}{25(4dte^{\frac{1}{5}t} + 2t)^{4}} + \frac{64d^{2}nte^{\frac{1}{5}t}}{125(4dte^{\frac{1}{5}t} + 2t)^{3}} - \frac{4d^{2}nte^{\frac{1}{5}t}}{625(4dte^{\frac{1}{5}t} + 2t)^{2}} + \frac{384dn}{(4dte^{\frac{1}{5}t} + 2t)^{5}}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。