本次共计算 2 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/2】求函数sqrt(DD + bb)sin(wx + arctan(\frac{b}{a})) + c 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sin(wx + arctan(\frac{b}{a}))sqrt(D^{2} + b^{2}) + c\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sin(wx + arctan(\frac{b}{a}))sqrt(D^{2} + b^{2}) + c\right)}{dx}\\=&cos(wx + arctan(\frac{b}{a}))(w + (\frac{(0)}{(1 + (\frac{b}{a})^{2})}))sqrt(D^{2} + b^{2}) + \frac{sin(wx + arctan(\frac{b}{a}))(0 + 0)*\frac{1}{2}}{(D^{2} + b^{2})^{\frac{1}{2}}} + 0\\=&wcos(wx + arctan(\frac{b}{a}))sqrt(D^{2} + b^{2})\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( wcos(wx + arctan(\frac{b}{a}))sqrt(D^{2} + b^{2})\right)}{dx}\\=&w*-sin(wx + arctan(\frac{b}{a}))(w + (\frac{(0)}{(1 + (\frac{b}{a})^{2})}))sqrt(D^{2} + b^{2}) + \frac{wcos(wx + arctan(\frac{b}{a}))(0 + 0)*\frac{1}{2}}{(D^{2} + b^{2})^{\frac{1}{2}}}\\=&-w^{2}sin(wx + arctan(\frac{b}{a}))sqrt(D^{2} + b^{2})\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( -w^{2}sin(wx + arctan(\frac{b}{a}))sqrt(D^{2} + b^{2})\right)}{dx}\\=&-w^{2}cos(wx + arctan(\frac{b}{a}))(w + (\frac{(0)}{(1 + (\frac{b}{a})^{2})}))sqrt(D^{2} + b^{2}) - \frac{w^{2}sin(wx + arctan(\frac{b}{a}))(0 + 0)*\frac{1}{2}}{(D^{2} + b^{2})^{\frac{1}{2}}}\\=&-w^{3}cos(wx + arctan(\frac{b}{a}))sqrt(D^{2} + b^{2})\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( -w^{3}cos(wx + arctan(\frac{b}{a}))sqrt(D^{2} + b^{2})\right)}{dx}\\=&-w^{3}*-sin(wx + arctan(\frac{b}{a}))(w + (\frac{(0)}{(1 + (\frac{b}{a})^{2})}))sqrt(D^{2} + b^{2}) - \frac{w^{3}cos(wx + arctan(\frac{b}{a}))(0 + 0)*\frac{1}{2}}{(D^{2} + b^{2})^{\frac{1}{2}}}\\=&w^{4}sin(wx + arctan(\frac{b}{a}))sqrt(D^{2} + b^{2})\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}【2/2】求函数Dsin(wx) + bcos(wx) + c 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( Dsin(wx) + bcos(wx) + c\right)}{dx}\\=&Dcos(wx)w + b*-sin(wx)w + 0\\=&Dwcos(wx) - wbsin(wx)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( Dwcos(wx) - wbsin(wx)\right)}{dx}\\=&Dw*-sin(wx)w - wbcos(wx)w\\=&-Dw^{2}sin(wx) - w^{2}bcos(wx)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( -Dw^{2}sin(wx) - w^{2}bcos(wx)\right)}{dx}\\=&-Dw^{2}cos(wx)w - w^{2}b*-sin(wx)w\\=&-Dw^{3}cos(wx) + w^{3}bsin(wx)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( -Dw^{3}cos(wx) + w^{3}bsin(wx)\right)}{dx}\\=&-Dw^{3}*-sin(wx)w + w^{3}bcos(wx)w\\=&Dw^{4}sin(wx) + w^{4}bcos(wx)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!