本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(2{x}^{2} + \frac{x}{7} + 555){\frac{1}{sin(x)}}^{cos(x)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = {\frac{1}{sin(x)}}^{cos(x)}ln(2x^{2} + \frac{1}{7}x + 555)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {\frac{1}{sin(x)}}^{cos(x)}ln(2x^{2} + \frac{1}{7}x + 555)\right)}{dx}\\=&({\frac{1}{sin(x)}}^{cos(x)}((-sin(x))ln(\frac{1}{sin(x)}) + \frac{(cos(x))(\frac{-cos(x)}{sin^{2}(x)})}{(\frac{1}{sin(x)})}))ln(2x^{2} + \frac{1}{7}x + 555) + \frac{{\frac{1}{sin(x)}}^{cos(x)}(2*2x + \frac{1}{7} + 0)}{(2x^{2} + \frac{1}{7}x + 555)}\\=&-{\frac{1}{sin(x)}}^{cos(x)}ln(\frac{1}{sin(x)})ln(2x^{2} + \frac{1}{7}x + 555)sin(x) - \frac{{\frac{1}{sin(x)}}^{cos(x)}ln(2x^{2} + \frac{1}{7}x + 555)cos^{2}(x)}{sin(x)} + \frac{4x{\frac{1}{sin(x)}}^{cos(x)}}{(2x^{2} + \frac{1}{7}x + 555)} + \frac{{\frac{1}{sin(x)}}^{cos(x)}}{7(2x^{2} + \frac{1}{7}x + 555)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!