本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sin({x}^{2}x) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sin(x^{3})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sin(x^{3})\right)}{dx}\\=&cos(x^{3})*3x^{2}\\=&3x^{2}cos(x^{3})\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 3x^{2}cos(x^{3})\right)}{dx}\\=&3*2xcos(x^{3}) + 3x^{2}*-sin(x^{3})*3x^{2}\\=&6xcos(x^{3}) - 9x^{4}sin(x^{3})\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 6xcos(x^{3}) - 9x^{4}sin(x^{3})\right)}{dx}\\=&6cos(x^{3}) + 6x*-sin(x^{3})*3x^{2} - 9*4x^{3}sin(x^{3}) - 9x^{4}cos(x^{3})*3x^{2}\\=&6cos(x^{3}) - 54x^{3}sin(x^{3}) - 27x^{6}cos(x^{3})\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 6cos(x^{3}) - 54x^{3}sin(x^{3}) - 27x^{6}cos(x^{3})\right)}{dx}\\=&6*-sin(x^{3})*3x^{2} - 54*3x^{2}sin(x^{3}) - 54x^{3}cos(x^{3})*3x^{2} - 27*6x^{5}cos(x^{3}) - 27x^{6}*-sin(x^{3})*3x^{2}\\=&-180x^{2}sin(x^{3}) - 324x^{5}cos(x^{3}) + 81x^{8}sin(x^{3})\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!