本次共计算 1 个题目:每一题对 n 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(1 + \frac{1}{n})}^{n} 关于 n 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = (\frac{1}{n} + 1)^{n}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( (\frac{1}{n} + 1)^{n}\right)}{dn}\\=&((\frac{1}{n} + 1)^{n}((1)ln(\frac{1}{n} + 1) + \frac{(n)(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)}))\\=&(\frac{1}{n} + 1)^{n}ln(\frac{1}{n} + 1) - \frac{(\frac{1}{n} + 1)^{n}}{(\frac{1}{n} + 1)n}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( (\frac{1}{n} + 1)^{n}ln(\frac{1}{n} + 1) - \frac{(\frac{1}{n} + 1)^{n}}{(\frac{1}{n} + 1)n}\right)}{dn}\\=&((\frac{1}{n} + 1)^{n}((1)ln(\frac{1}{n} + 1) + \frac{(n)(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)}))ln(\frac{1}{n} + 1) + \frac{(\frac{1}{n} + 1)^{n}(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)} - \frac{(\frac{-(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)^{2}})(\frac{1}{n} + 1)^{n}}{n} - \frac{-(\frac{1}{n} + 1)^{n}}{(\frac{1}{n} + 1)n^{2}} - \frac{((\frac{1}{n} + 1)^{n}((1)ln(\frac{1}{n} + 1) + \frac{(n)(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)}))}{(\frac{1}{n} + 1)n}\\=&(\frac{1}{n} + 1)^{n}ln^{2}(\frac{1}{n} + 1) - \frac{2(\frac{1}{n} + 1)^{n}ln(\frac{1}{n} + 1)}{(\frac{1}{n} + 1)n} - \frac{(\frac{1}{n} + 1)^{n}}{(\frac{1}{n} + 1)^{2}n^{3}} + \frac{(\frac{1}{n} + 1)^{n}}{(\frac{1}{n} + 1)^{2}n^{2}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( (\frac{1}{n} + 1)^{n}ln^{2}(\frac{1}{n} + 1) - \frac{2(\frac{1}{n} + 1)^{n}ln(\frac{1}{n} + 1)}{(\frac{1}{n} + 1)n} - \frac{(\frac{1}{n} + 1)^{n}}{(\frac{1}{n} + 1)^{2}n^{3}} + \frac{(\frac{1}{n} + 1)^{n}}{(\frac{1}{n} + 1)^{2}n^{2}}\right)}{dn}\\=&((\frac{1}{n} + 1)^{n}((1)ln(\frac{1}{n} + 1) + \frac{(n)(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)}))ln^{2}(\frac{1}{n} + 1) + \frac{(\frac{1}{n} + 1)^{n}*2ln(\frac{1}{n} + 1)(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)} - \frac{2(\frac{-(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)^{2}})(\frac{1}{n} + 1)^{n}ln(\frac{1}{n} + 1)}{n} - \frac{2*-(\frac{1}{n} + 1)^{n}ln(\frac{1}{n} + 1)}{(\frac{1}{n} + 1)n^{2}} - \frac{2((\frac{1}{n} + 1)^{n}((1)ln(\frac{1}{n} + 1) + \frac{(n)(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)}))ln(\frac{1}{n} + 1)}{(\frac{1}{n} + 1)n} - \frac{2(\frac{1}{n} + 1)^{n}(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)n(\frac{1}{n} + 1)} - \frac{(\frac{-2(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)^{3}})(\frac{1}{n} + 1)^{n}}{n^{3}} - \frac{-3(\frac{1}{n} + 1)^{n}}{(\frac{1}{n} + 1)^{2}n^{4}} - \frac{((\frac{1}{n} + 1)^{n}((1)ln(\frac{1}{n} + 1) + \frac{(n)(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)}))}{(\frac{1}{n} + 1)^{2}n^{3}} + \frac{(\frac{-2(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)^{3}})(\frac{1}{n} + 1)^{n}}{n^{2}} + \frac{-2(\frac{1}{n} + 1)^{n}}{(\frac{1}{n} + 1)^{2}n^{3}} + \frac{((\frac{1}{n} + 1)^{n}((1)ln(\frac{1}{n} + 1) + \frac{(n)(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)}))}{(\frac{1}{n} + 1)^{2}n^{2}}\\=&(\frac{1}{n} + 1)^{n}ln^{3}(\frac{1}{n} + 1) - \frac{3(\frac{1}{n} + 1)^{n}ln^{2}(\frac{1}{n} + 1)}{(\frac{1}{n} + 1)n} - \frac{3(\frac{1}{n} + 1)^{n}ln(\frac{1}{n} + 1)}{(\frac{1}{n} + 1)^{2}n^{3}} + \frac{3(\frac{1}{n} + 1)^{n}ln(\frac{1}{n} + 1)}{(\frac{1}{n} + 1)^{2}n^{2}} - \frac{2(\frac{1}{n} + 1)^{n}}{(\frac{1}{n} + 1)^{3}n^{5}} + \frac{3(\frac{1}{n} + 1)^{n}}{(\frac{1}{n} + 1)^{2}n^{4}} + \frac{3(\frac{1}{n} + 1)^{n}}{(\frac{1}{n} + 1)^{3}n^{4}} - \frac{(\frac{1}{n} + 1)^{n}}{(\frac{1}{n} + 1)^{3}n^{3}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( (\frac{1}{n} + 1)^{n}ln^{3}(\frac{1}{n} + 1) - \frac{3(\frac{1}{n} + 1)^{n}ln^{2}(\frac{1}{n} + 1)}{(\frac{1}{n} + 1)n} - \frac{3(\frac{1}{n} + 1)^{n}ln(\frac{1}{n} + 1)}{(\frac{1}{n} + 1)^{2}n^{3}} + \frac{3(\frac{1}{n} + 1)^{n}ln(\frac{1}{n} + 1)}{(\frac{1}{n} + 1)^{2}n^{2}} - \frac{2(\frac{1}{n} + 1)^{n}}{(\frac{1}{n} + 1)^{3}n^{5}} + \frac{3(\frac{1}{n} + 1)^{n}}{(\frac{1}{n} + 1)^{2}n^{4}} + \frac{3(\frac{1}{n} + 1)^{n}}{(\frac{1}{n} + 1)^{3}n^{4}} - \frac{(\frac{1}{n} + 1)^{n}}{(\frac{1}{n} + 1)^{3}n^{3}}\right)}{dn}\\=&((\frac{1}{n} + 1)^{n}((1)ln(\frac{1}{n} + 1) + \frac{(n)(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)}))ln^{3}(\frac{1}{n} + 1) + \frac{(\frac{1}{n} + 1)^{n}*3ln^{2}(\frac{1}{n} + 1)(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)} - \frac{3(\frac{-(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)^{2}})(\frac{1}{n} + 1)^{n}ln^{2}(\frac{1}{n} + 1)}{n} - \frac{3*-(\frac{1}{n} + 1)^{n}ln^{2}(\frac{1}{n} + 1)}{(\frac{1}{n} + 1)n^{2}} - \frac{3((\frac{1}{n} + 1)^{n}((1)ln(\frac{1}{n} + 1) + \frac{(n)(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)}))ln^{2}(\frac{1}{n} + 1)}{(\frac{1}{n} + 1)n} - \frac{3(\frac{1}{n} + 1)^{n}*2ln(\frac{1}{n} + 1)(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)n(\frac{1}{n} + 1)} - \frac{3(\frac{-2(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)^{3}})(\frac{1}{n} + 1)^{n}ln(\frac{1}{n} + 1)}{n^{3}} - \frac{3*-3(\frac{1}{n} + 1)^{n}ln(\frac{1}{n} + 1)}{(\frac{1}{n} + 1)^{2}n^{4}} - \frac{3((\frac{1}{n} + 1)^{n}((1)ln(\frac{1}{n} + 1) + \frac{(n)(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)}))ln(\frac{1}{n} + 1)}{(\frac{1}{n} + 1)^{2}n^{3}} - \frac{3(\frac{1}{n} + 1)^{n}(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)^{2}n^{3}(\frac{1}{n} + 1)} + \frac{3(\frac{-2(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)^{3}})(\frac{1}{n} + 1)^{n}ln(\frac{1}{n} + 1)}{n^{2}} + \frac{3*-2(\frac{1}{n} + 1)^{n}ln(\frac{1}{n} + 1)}{(\frac{1}{n} + 1)^{2}n^{3}} + \frac{3((\frac{1}{n} + 1)^{n}((1)ln(\frac{1}{n} + 1) + \frac{(n)(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)}))ln(\frac{1}{n} + 1)}{(\frac{1}{n} + 1)^{2}n^{2}} + \frac{3(\frac{1}{n} + 1)^{n}(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)^{2}n^{2}(\frac{1}{n} + 1)} - \frac{2(\frac{-3(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)^{4}})(\frac{1}{n} + 1)^{n}}{n^{5}} - \frac{2*-5(\frac{1}{n} + 1)^{n}}{(\frac{1}{n} + 1)^{3}n^{6}} - \frac{2((\frac{1}{n} + 1)^{n}((1)ln(\frac{1}{n} + 1) + \frac{(n)(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)}))}{(\frac{1}{n} + 1)^{3}n^{5}} + \frac{3(\frac{-2(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)^{3}})(\frac{1}{n} + 1)^{n}}{n^{4}} + \frac{3*-4(\frac{1}{n} + 1)^{n}}{(\frac{1}{n} + 1)^{2}n^{5}} + \frac{3((\frac{1}{n} + 1)^{n}((1)ln(\frac{1}{n} + 1) + \frac{(n)(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)}))}{(\frac{1}{n} + 1)^{2}n^{4}} + \frac{3(\frac{-3(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)^{4}})(\frac{1}{n} + 1)^{n}}{n^{4}} + \frac{3*-4(\frac{1}{n} + 1)^{n}}{(\frac{1}{n} + 1)^{3}n^{5}} + \frac{3((\frac{1}{n} + 1)^{n}((1)ln(\frac{1}{n} + 1) + \frac{(n)(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)}))}{(\frac{1}{n} + 1)^{3}n^{4}} - \frac{(\frac{-3(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)^{4}})(\frac{1}{n} + 1)^{n}}{n^{3}} - \frac{-3(\frac{1}{n} + 1)^{n}}{(\frac{1}{n} + 1)^{3}n^{4}} - \frac{((\frac{1}{n} + 1)^{n}((1)ln(\frac{1}{n} + 1) + \frac{(n)(\frac{-1}{n^{2}} + 0)}{(\frac{1}{n} + 1)}))}{(\frac{1}{n} + 1)^{3}n^{3}}\\=&(\frac{1}{n} + 1)^{n}ln^{4}(\frac{1}{n} + 1) - \frac{4(\frac{1}{n} + 1)^{n}ln^{3}(\frac{1}{n} + 1)}{(\frac{1}{n} + 1)n} - \frac{6(\frac{1}{n} + 1)^{n}ln^{2}(\frac{1}{n} + 1)}{(\frac{1}{n} + 1)^{2}n^{3}} + \frac{6(\frac{1}{n} + 1)^{n}ln^{2}(\frac{1}{n} + 1)}{(\frac{1}{n} + 1)^{2}n^{2}} - \frac{8(\frac{1}{n} + 1)^{n}ln(\frac{1}{n} + 1)}{(\frac{1}{n} + 1)^{3}n^{5}} + \frac{12(\frac{1}{n} + 1)^{n}ln(\frac{1}{n} + 1)}{(\frac{1}{n} + 1)^{2}n^{4}} + \frac{12(\frac{1}{n} + 1)^{n}ln(\frac{1}{n} + 1)}{(\frac{1}{n} + 1)^{3}n^{4}} - \frac{4(\frac{1}{n} + 1)^{n}ln(\frac{1}{n} + 1)}{(\frac{1}{n} + 1)^{3}n^{3}} - \frac{12(\frac{1}{n} + 1)^{n}}{(\frac{1}{n} + 1)^{3}n^{5}} - \frac{6(\frac{1}{n} + 1)^{n}}{(\frac{1}{n} + 1)^{4}n^{7}} + \frac{16(\frac{1}{n} + 1)^{n}}{(\frac{1}{n} + 1)^{3}n^{6}} + \frac{11(\frac{1}{n} + 1)^{n}}{(\frac{1}{n} + 1)^{4}n^{6}} - \frac{12(\frac{1}{n} + 1)^{n}}{(\frac{1}{n} + 1)^{2}n^{5}} - \frac{6(\frac{1}{n} + 1)^{n}}{(\frac{1}{n} + 1)^{4}n^{5}} + \frac{(\frac{1}{n} + 1)^{n}}{(\frac{1}{n} + 1)^{4}n^{4}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!