本次共计算 3 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/3】求函数e^{sh(x)} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( e^{sh(x)}\right)}{dx}\\=&e^{sh(x)}ch(x)\\=&e^{sh(x)}ch(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( e^{sh(x)}ch(x)\right)}{dx}\\=&e^{sh(x)}ch(x)ch(x) + e^{sh(x)}sh(x)\\=&e^{sh(x)}ch^{2}(x) + e^{sh(x)}sh(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( e^{sh(x)}ch^{2}(x) + e^{sh(x)}sh(x)\right)}{dx}\\=&e^{sh(x)}ch(x)ch^{2}(x) + e^{sh(x)}*2ch(x)sh(x) + e^{sh(x)}ch(x)sh(x) + e^{sh(x)}ch(x)\\=&e^{sh(x)}ch^{3}(x) + 3e^{sh(x)}sh(x)ch(x) + e^{sh(x)}ch(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( e^{sh(x)}ch^{3}(x) + 3e^{sh(x)}sh(x)ch(x) + e^{sh(x)}ch(x)\right)}{dx}\\=&e^{sh(x)}ch(x)ch^{3}(x) + e^{sh(x)}*3ch^{2}(x)sh(x) + 3e^{sh(x)}ch(x)sh(x)ch(x) + 3e^{sh(x)}ch(x)ch(x) + 3e^{sh(x)}sh(x)sh(x) + e^{sh(x)}ch(x)ch(x) + e^{sh(x)}sh(x)\\=&e^{sh(x)}ch^{4}(x) + 6e^{sh(x)}sh(x)ch^{2}(x) + 4e^{sh(x)}ch^{2}(x) + 3e^{sh(x)}sh^{2}(x) + e^{sh(x)}sh(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}【2/3】求函数e^{ch(x)} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( e^{ch(x)}\right)}{dx}\\=&e^{ch(x)}sh(x)\\=&e^{ch(x)}sh(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( e^{ch(x)}sh(x)\right)}{dx}\\=&e^{ch(x)}sh(x)sh(x) + e^{ch(x)}ch(x)\\=&e^{ch(x)}sh^{2}(x) + e^{ch(x)}ch(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( e^{ch(x)}sh^{2}(x) + e^{ch(x)}ch(x)\right)}{dx}\\=&e^{ch(x)}sh(x)sh^{2}(x) + e^{ch(x)}*2sh(x)ch(x) + e^{ch(x)}sh(x)ch(x) + e^{ch(x)}sh(x)\\=&3e^{ch(x)}sh(x)ch(x) + e^{ch(x)}sh^{3}(x) + e^{ch(x)}sh(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 3e^{ch(x)}sh(x)ch(x) + e^{ch(x)}sh^{3}(x) + e^{ch(x)}sh(x)\right)}{dx}\\=&3e^{ch(x)}sh(x)sh(x)ch(x) + 3e^{ch(x)}ch(x)ch(x) + 3e^{ch(x)}sh(x)sh(x) + e^{ch(x)}sh(x)sh^{3}(x) + e^{ch(x)}*3sh^{2}(x)ch(x) + e^{ch(x)}sh(x)sh(x) + e^{ch(x)}ch(x)\\=&6e^{ch(x)}sh^{2}(x)ch(x) + 3e^{ch(x)}ch^{2}(x) + 4e^{ch(x)}sh^{2}(x) + e^{ch(x)}sh^{4}(x) + e^{ch(x)}ch(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}【3/3】求函数e^{th(x)} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( e^{th(x)}\right)}{dx}\\=&e^{th(x)}(1 - th^{2}(x))\\=& - e^{th(x)}th^{2}(x) + e^{th(x)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( - e^{th(x)}th^{2}(x) + e^{th(x)}\right)}{dx}\\=& - e^{th(x)}(1 - th^{2}(x))th^{2}(x) - e^{th(x)}*2th(x)(1 - th^{2}(x)) + e^{th(x)}(1 - th^{2}(x))\\=& - 2e^{th(x)}th^{2}(x) + e^{th(x)}th^{4}(x) - 2e^{th(x)}th(x) + 2e^{th(x)}th^{3}(x) + e^{th(x)}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( - 2e^{th(x)}th^{2}(x) + e^{th(x)}th^{4}(x) - 2e^{th(x)}th(x) + 2e^{th(x)}th^{3}(x) + e^{th(x)}\right)}{dx}\\=& - 2e^{th(x)}(1 - th^{2}(x))th^{2}(x) - 2e^{th(x)}*2th(x)(1 - th^{2}(x)) + e^{th(x)}(1 - th^{2}(x))th^{4}(x) + e^{th(x)}*4th^{3}(x)(1 - th^{2}(x)) - 2e^{th(x)}(1 - th^{2}(x))th(x) - 2e^{th(x)}(1 - th^{2}(x)) + 2e^{th(x)}(1 - th^{2}(x))th^{3}(x) + 2e^{th(x)}*3th^{2}(x)(1 - th^{2}(x)) + e^{th(x)}(1 - th^{2}(x))\\=&5e^{th(x)}th^{2}(x) - 3e^{th(x)}th^{4}(x) - e^{th(x)}th^{6}(x) + 12e^{th(x)}th^{3}(x) - 6e^{th(x)}th^{5}(x) - 6e^{th(x)}th(x) - e^{th(x)}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 5e^{th(x)}th^{2}(x) - 3e^{th(x)}th^{4}(x) - e^{th(x)}th^{6}(x) + 12e^{th(x)}th^{3}(x) - 6e^{th(x)}th^{5}(x) - 6e^{th(x)}th(x) - e^{th(x)}\right)}{dx}\\=&5e^{th(x)}(1 - th^{2}(x))th^{2}(x) + 5e^{th(x)}*2th(x)(1 - th^{2}(x)) - 3e^{th(x)}(1 - th^{2}(x))th^{4}(x) - 3e^{th(x)}*4th^{3}(x)(1 - th^{2}(x)) - e^{th(x)}(1 - th^{2}(x))th^{6}(x) - e^{th(x)}*6th^{5}(x)(1 - th^{2}(x)) + 12e^{th(x)}(1 - th^{2}(x))th^{3}(x) + 12e^{th(x)}*3th^{2}(x)(1 - th^{2}(x)) - 6e^{th(x)}(1 - th^{2}(x))th^{5}(x) - 6e^{th(x)}*5th^{4}(x)(1 - th^{2}(x)) - 6e^{th(x)}(1 - th^{2}(x))th(x) - 6e^{th(x)}(1 - th^{2}(x)) - e^{th(x)}(1 - th^{2}(x))\\=&48e^{th(x)}th^{2}(x) - 74e^{th(x)}th^{4}(x) + 32e^{th(x)}th^{6}(x) - 4e^{th(x)}th^{3}(x) + e^{th(x)}th^{8}(x) - 12e^{th(x)}th^{5}(x) + 12e^{th(x)}th^{7}(x) + 4e^{th(x)}th(x) - 7e^{th(x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!