数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 t 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数(lg(t))(sin(t))(cos(t))(e^{t})(tt - 2t - 3) 关于 t 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = t^{2}e^{t}lg(t)sin(t)cos(t) - 2te^{t}lg(t)sin(t)cos(t) - 3e^{t}lg(t)sin(t)cos(t)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( t^{2}e^{t}lg(t)sin(t)cos(t) - 2te^{t}lg(t)sin(t)cos(t) - 3e^{t}lg(t)sin(t)cos(t)\right)}{dt}\\=&2te^{t}lg(t)sin(t)cos(t) + t^{2}e^{t}lg(t)sin(t)cos(t) + \frac{t^{2}e^{t}sin(t)cos(t)}{ln{10}(t)} + t^{2}e^{t}lg(t)cos(t)cos(t) + t^{2}e^{t}lg(t)sin(t)*-sin(t) - 2e^{t}lg(t)sin(t)cos(t) - 2te^{t}lg(t)sin(t)cos(t) - \frac{2te^{t}sin(t)cos(t)}{ln{10}(t)} - 2te^{t}lg(t)cos(t)cos(t) - 2te^{t}lg(t)sin(t)*-sin(t) - 3e^{t}lg(t)sin(t)cos(t) - \frac{3e^{t}sin(t)cos(t)}{ln{10}(t)} - 3e^{t}lg(t)cos(t)cos(t) - 3e^{t}lg(t)sin(t)*-sin(t)\\=&t^{2}e^{t}lg(t)sin(t)cos(t) + \frac{te^{t}sin(t)cos(t)}{ln{10}} + t^{2}e^{t}lg(t)cos^{2}(t) - t^{2}e^{t}lg(t)sin^{2}(t) - 5e^{t}lg(t)sin(t)cos(t) - \frac{2e^{t}sin(t)cos(t)}{ln{10}} - 2te^{t}lg(t)cos^{2}(t) + 2te^{t}lg(t)sin^{2}(t) - \frac{3e^{t}sin(t)cos(t)}{tln{10}} - 3e^{t}lg(t)cos^{2}(t) + 3e^{t}lg(t)sin^{2}(t)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( t^{2}e^{t}lg(t)sin(t)cos(t) + \frac{te^{t}sin(t)cos(t)}{ln{10}} + t^{2}e^{t}lg(t)cos^{2}(t) - t^{2}e^{t}lg(t)sin^{2}(t) - 5e^{t}lg(t)sin(t)cos(t) - \frac{2e^{t}sin(t)cos(t)}{ln{10}} - 2te^{t}lg(t)cos^{2}(t) + 2te^{t}lg(t)sin^{2}(t) - \frac{3e^{t}sin(t)cos(t)}{tln{10}} - 3e^{t}lg(t)cos^{2}(t) + 3e^{t}lg(t)sin^{2}(t)\right)}{dt}\\=&2te^{t}lg(t)sin(t)cos(t) + t^{2}e^{t}lg(t)sin(t)cos(t) + \frac{t^{2}e^{t}sin(t)cos(t)}{ln{10}(t)} + t^{2}e^{t}lg(t)cos(t)cos(t) + t^{2}e^{t}lg(t)sin(t)*-sin(t) + \frac{e^{t}sin(t)cos(t)}{ln{10}} + \frac{te^{t}sin(t)cos(t)}{ln{10}} + \frac{te^{t}*-0sin(t)cos(t)}{ln^{2}{10}} + \frac{te^{t}cos(t)cos(t)}{ln{10}} + \frac{te^{t}sin(t)*-sin(t)}{ln{10}} + 2te^{t}lg(t)cos^{2}(t) + t^{2}e^{t}lg(t)cos^{2}(t) + \frac{t^{2}e^{t}cos^{2}(t)}{ln{10}(t)} + t^{2}e^{t}lg(t)*-2cos(t)sin(t) - 2te^{t}lg(t)sin^{2}(t) - t^{2}e^{t}lg(t)sin^{2}(t) - \frac{t^{2}e^{t}sin^{2}(t)}{ln{10}(t)} - t^{2}e^{t}lg(t)*2sin(t)cos(t) - 5e^{t}lg(t)sin(t)cos(t) - \frac{5e^{t}sin(t)cos(t)}{ln{10}(t)} - 5e^{t}lg(t)cos(t)cos(t) - 5e^{t}lg(t)sin(t)*-sin(t) - \frac{2e^{t}sin(t)cos(t)}{ln{10}} - \frac{2e^{t}*-0sin(t)cos(t)}{ln^{2}{10}} - \frac{2e^{t}cos(t)cos(t)}{ln{10}} - \frac{2e^{t}sin(t)*-sin(t)}{ln{10}} - 2e^{t}lg(t)cos^{2}(t) - 2te^{t}lg(t)cos^{2}(t) - \frac{2te^{t}cos^{2}(t)}{ln{10}(t)} - 2te^{t}lg(t)*-2cos(t)sin(t) + 2e^{t}lg(t)sin^{2}(t) + 2te^{t}lg(t)sin^{2}(t) + \frac{2te^{t}sin^{2}(t)}{ln{10}(t)} + 2te^{t}lg(t)*2sin(t)cos(t) - \frac{3*-e^{t}sin(t)cos(t)}{t^{2}ln{10}} - \frac{3e^{t}sin(t)cos(t)}{tln{10}} - \frac{3e^{t}*-0sin(t)cos(t)}{tln^{2}{10}} - \frac{3e^{t}cos(t)cos(t)}{tln{10}} - \frac{3e^{t}sin(t)*-sin(t)}{tln{10}} - 3e^{t}lg(t)cos^{2}(t) - \frac{3e^{t}cos^{2}(t)}{ln{10}(t)} - 3e^{t}lg(t)*-2cos(t)sin(t) + 3e^{t}lg(t)sin^{2}(t) + \frac{3e^{t}sin^{2}(t)}{ln{10}(t)} + 3e^{t}lg(t)*2sin(t)cos(t)\\=&10te^{t}lg(t)sin(t)cos(t) - 3t^{2}e^{t}lg(t)sin(t)cos(t) + \frac{2te^{t}sin(t)cos(t)}{ln{10}} + 2t^{2}e^{t}lg(t)cos^{2}(t) - 2t^{2}e^{t}lg(t)sin^{2}(t) - \frac{e^{t}sin(t)cos(t)}{ln{10}} + \frac{2te^{t}cos^{2}(t)}{ln{10}} - \frac{8e^{t}sin(t)cos(t)}{tln{10}} + 7e^{t}lg(t)sin(t)cos(t) + \frac{3e^{t}sin(t)cos(t)}{t^{2}ln{10}} - 10e^{t}lg(t)cos^{2}(t) + 10e^{t}lg(t)sin^{2}(t) - \frac{4e^{t}cos^{2}(t)}{ln{10}} + \frac{4e^{t}sin^{2}(t)}{ln{10}} - \frac{2te^{t}sin^{2}(t)}{ln{10}} - \frac{6e^{t}cos^{2}(t)}{tln{10}} + \frac{6e^{t}sin^{2}(t)}{tln{10}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 10te^{t}lg(t)sin(t)cos(t) - 3t^{2}e^{t}lg(t)sin(t)cos(t) + \frac{2te^{t}sin(t)cos(t)}{ln{10}} + 2t^{2}e^{t}lg(t)cos^{2}(t) - 2t^{2}e^{t}lg(t)sin^{2}(t) - \frac{e^{t}sin(t)cos(t)}{ln{10}} + \frac{2te^{t}cos^{2}(t)}{ln{10}} - \frac{8e^{t}sin(t)cos(t)}{tln{10}} + 7e^{t}lg(t)sin(t)cos(t) + \frac{3e^{t}sin(t)cos(t)}{t^{2}ln{10}} - 10e^{t}lg(t)cos^{2}(t) + 10e^{t}lg(t)sin^{2}(t) - \frac{4e^{t}cos^{2}(t)}{ln{10}} + \frac{4e^{t}sin^{2}(t)}{ln{10}} - \frac{2te^{t}sin^{2}(t)}{ln{10}} - \frac{6e^{t}cos^{2}(t)}{tln{10}} + \frac{6e^{t}sin^{2}(t)}{tln{10}}\right)}{dt}\\=&10e^{t}lg(t)sin(t)cos(t) + 10te^{t}lg(t)sin(t)cos(t) + \frac{10te^{t}sin(t)cos(t)}{ln{10}(t)} + 10te^{t}lg(t)cos(t)cos(t) + 10te^{t}lg(t)sin(t)*-sin(t) - 3*2te^{t}lg(t)sin(t)cos(t) - 3t^{2}e^{t}lg(t)sin(t)cos(t) - \frac{3t^{2}e^{t}sin(t)cos(t)}{ln{10}(t)} - 3t^{2}e^{t}lg(t)cos(t)cos(t) - 3t^{2}e^{t}lg(t)sin(t)*-sin(t) + \frac{2e^{t}sin(t)cos(t)}{ln{10}} + \frac{2te^{t}sin(t)cos(t)}{ln{10}} + \frac{2te^{t}*-0sin(t)cos(t)}{ln^{2}{10}} + \frac{2te^{t}cos(t)cos(t)}{ln{10}} + \frac{2te^{t}sin(t)*-sin(t)}{ln{10}} + 2*2te^{t}lg(t)cos^{2}(t) + 2t^{2}e^{t}lg(t)cos^{2}(t) + \frac{2t^{2}e^{t}cos^{2}(t)}{ln{10}(t)} + 2t^{2}e^{t}lg(t)*-2cos(t)sin(t) - 2*2te^{t}lg(t)sin^{2}(t) - 2t^{2}e^{t}lg(t)sin^{2}(t) - \frac{2t^{2}e^{t}sin^{2}(t)}{ln{10}(t)} - 2t^{2}e^{t}lg(t)*2sin(t)cos(t) - \frac{e^{t}sin(t)cos(t)}{ln{10}} - \frac{e^{t}*-0sin(t)cos(t)}{ln^{2}{10}} - \frac{e^{t}cos(t)cos(t)}{ln{10}} - \frac{e^{t}sin(t)*-sin(t)}{ln{10}} + \frac{2e^{t}cos^{2}(t)}{ln{10}} + \frac{2te^{t}cos^{2}(t)}{ln{10}} + \frac{2te^{t}*-0cos^{2}(t)}{ln^{2}{10}} + \frac{2te^{t}*-2cos(t)sin(t)}{ln{10}} - \frac{8*-e^{t}sin(t)cos(t)}{t^{2}ln{10}} - \frac{8e^{t}sin(t)cos(t)}{tln{10}} - \frac{8e^{t}*-0sin(t)cos(t)}{tln^{2}{10}} - \frac{8e^{t}cos(t)cos(t)}{tln{10}} - \frac{8e^{t}sin(t)*-sin(t)}{tln{10}} + 7e^{t}lg(t)sin(t)cos(t) + \frac{7e^{t}sin(t)cos(t)}{ln{10}(t)} + 7e^{t}lg(t)cos(t)cos(t) + 7e^{t}lg(t)sin(t)*-sin(t) + \frac{3*-2e^{t}sin(t)cos(t)}{t^{3}ln{10}} + \frac{3e^{t}sin(t)cos(t)}{t^{2}ln{10}} + \frac{3e^{t}*-0sin(t)cos(t)}{t^{2}ln^{2}{10}} + \frac{3e^{t}cos(t)cos(t)}{t^{2}ln{10}} + \frac{3e^{t}sin(t)*-sin(t)}{t^{2}ln{10}} - 10e^{t}lg(t)cos^{2}(t) - \frac{10e^{t}cos^{2}(t)}{ln{10}(t)} - 10e^{t}lg(t)*-2cos(t)sin(t) + 10e^{t}lg(t)sin^{2}(t) + \frac{10e^{t}sin^{2}(t)}{ln{10}(t)} + 10e^{t}lg(t)*2sin(t)cos(t) - \frac{4e^{t}cos^{2}(t)}{ln{10}} - \frac{4e^{t}*-0cos^{2}(t)}{ln^{2}{10}} - \frac{4e^{t}*-2cos(t)sin(t)}{ln{10}} + \frac{4e^{t}sin^{2}(t)}{ln{10}} + \frac{4e^{t}*-0sin^{2}(t)}{ln^{2}{10}} + \frac{4e^{t}*2sin(t)cos(t)}{ln{10}} - \frac{2e^{t}sin^{2}(t)}{ln{10}} - \frac{2te^{t}sin^{2}(t)}{ln{10}} - \frac{2te^{t}*-0sin^{2}(t)}{ln^{2}{10}} - \frac{2te^{t}*2sin(t)cos(t)}{ln{10}} - \frac{6*-e^{t}cos^{2}(t)}{t^{2}ln{10}} - \frac{6e^{t}cos^{2}(t)}{tln{10}} - \frac{6e^{t}*-0cos^{2}(t)}{tln^{2}{10}} - \frac{6e^{t}*-2cos(t)sin(t)}{tln{10}} + \frac{6*-e^{t}sin^{2}(t)}{t^{2}ln{10}} + \frac{6e^{t}sin^{2}(t)}{tln{10}} + \frac{6e^{t}*-0sin^{2}(t)}{tln^{2}{10}} + \frac{6e^{t}*2sin(t)cos(t)}{tln{10}}\\=&57e^{t}lg(t)sin(t)cos(t) + 4te^{t}lg(t)sin(t)cos(t) + \frac{27e^{t}sin(t)cos(t)}{ln{10}} + 14te^{t}lg(t)cos^{2}(t) - 11t^{2}e^{t}lg(t)sin(t)cos(t) - 14te^{t}lg(t)sin^{2}(t) - \frac{9te^{t}sin(t)cos(t)}{ln{10}} - t^{2}e^{t}lg(t)cos^{2}(t) + t^{2}e^{t}lg(t)sin^{2}(t) + \frac{6te^{t}cos^{2}(t)}{ln{10}} + \frac{11e^{t}sin(t)cos(t)}{t^{2}ln{10}} - \frac{3e^{t}cos^{2}(t)}{ln{10}} + \frac{3e^{t}sin^{2}(t)}{ln{10}} - \frac{24e^{t}cos^{2}(t)}{tln{10}} + \frac{23e^{t}sin(t)cos(t)}{tln{10}} - \frac{6e^{t}sin(t)cos(t)}{t^{3}ln{10}} + \frac{9e^{t}cos^{2}(t)}{t^{2}ln{10}} + \frac{24e^{t}sin^{2}(t)}{tln{10}} - 3e^{t}lg(t)cos^{2}(t) + 3e^{t}lg(t)sin^{2}(t) - \frac{6te^{t}sin^{2}(t)}{ln{10}} - \frac{9e^{t}sin^{2}(t)}{t^{2}ln{10}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 57e^{t}lg(t)sin(t)cos(t) + 4te^{t}lg(t)sin(t)cos(t) + \frac{27e^{t}sin(t)cos(t)}{ln{10}} + 14te^{t}lg(t)cos^{2}(t) - 11t^{2}e^{t}lg(t)sin(t)cos(t) - 14te^{t}lg(t)sin^{2}(t) - \frac{9te^{t}sin(t)cos(t)}{ln{10}} - t^{2}e^{t}lg(t)cos^{2}(t) + t^{2}e^{t}lg(t)sin^{2}(t) + \frac{6te^{t}cos^{2}(t)}{ln{10}} + \frac{11e^{t}sin(t)cos(t)}{t^{2}ln{10}} - \frac{3e^{t}cos^{2}(t)}{ln{10}} + \frac{3e^{t}sin^{2}(t)}{ln{10}} - \frac{24e^{t}cos^{2}(t)}{tln{10}} + \frac{23e^{t}sin(t)cos(t)}{tln{10}} - \frac{6e^{t}sin(t)cos(t)}{t^{3}ln{10}} + \frac{9e^{t}cos^{2}(t)}{t^{2}ln{10}} + \frac{24e^{t}sin^{2}(t)}{tln{10}} - 3e^{t}lg(t)cos^{2}(t) + 3e^{t}lg(t)sin^{2}(t) - \frac{6te^{t}sin^{2}(t)}{ln{10}} - \frac{9e^{t}sin^{2}(t)}{t^{2}ln{10}}\right)}{dt}\\=&57e^{t}lg(t)sin(t)cos(t) + \frac{57e^{t}sin(t)cos(t)}{ln{10}(t)} + 57e^{t}lg(t)cos(t)cos(t) + 57e^{t}lg(t)sin(t)*-sin(t) + 4e^{t}lg(t)sin(t)cos(t) + 4te^{t}lg(t)sin(t)cos(t) + \frac{4te^{t}sin(t)cos(t)}{ln{10}(t)} + 4te^{t}lg(t)cos(t)cos(t) + 4te^{t}lg(t)sin(t)*-sin(t) + \frac{27e^{t}sin(t)cos(t)}{ln{10}} + \frac{27e^{t}*-0sin(t)cos(t)}{ln^{2}{10}} + \frac{27e^{t}cos(t)cos(t)}{ln{10}} + \frac{27e^{t}sin(t)*-sin(t)}{ln{10}} + 14e^{t}lg(t)cos^{2}(t) + 14te^{t}lg(t)cos^{2}(t) + \frac{14te^{t}cos^{2}(t)}{ln{10}(t)} + 14te^{t}lg(t)*-2cos(t)sin(t) - 11*2te^{t}lg(t)sin(t)cos(t) - 11t^{2}e^{t}lg(t)sin(t)cos(t) - \frac{11t^{2}e^{t}sin(t)cos(t)}{ln{10}(t)} - 11t^{2}e^{t}lg(t)cos(t)cos(t) - 11t^{2}e^{t}lg(t)sin(t)*-sin(t) - 14e^{t}lg(t)sin^{2}(t) - 14te^{t}lg(t)sin^{2}(t) - \frac{14te^{t}sin^{2}(t)}{ln{10}(t)} - 14te^{t}lg(t)*2sin(t)cos(t) - \frac{9e^{t}sin(t)cos(t)}{ln{10}} - \frac{9te^{t}sin(t)cos(t)}{ln{10}} - \frac{9te^{t}*-0sin(t)cos(t)}{ln^{2}{10}} - \frac{9te^{t}cos(t)cos(t)}{ln{10}} - \frac{9te^{t}sin(t)*-sin(t)}{ln{10}} - 2te^{t}lg(t)cos^{2}(t) - t^{2}e^{t}lg(t)cos^{2}(t) - \frac{t^{2}e^{t}cos^{2}(t)}{ln{10}(t)} - t^{2}e^{t}lg(t)*-2cos(t)sin(t) + 2te^{t}lg(t)sin^{2}(t) + t^{2}e^{t}lg(t)sin^{2}(t) + \frac{t^{2}e^{t}sin^{2}(t)}{ln{10}(t)} + t^{2}e^{t}lg(t)*2sin(t)cos(t) + \frac{6e^{t}cos^{2}(t)}{ln{10}} + \frac{6te^{t}cos^{2}(t)}{ln{10}} + \frac{6te^{t}*-0cos^{2}(t)}{ln^{2}{10}} + \frac{6te^{t}*-2cos(t)sin(t)}{ln{10}} + \frac{11*-2e^{t}sin(t)cos(t)}{t^{3}ln{10}} + \frac{11e^{t}sin(t)cos(t)}{t^{2}ln{10}} + \frac{11e^{t}*-0sin(t)cos(t)}{t^{2}ln^{2}{10}} + \frac{11e^{t}cos(t)cos(t)}{t^{2}ln{10}} + \frac{11e^{t}sin(t)*-sin(t)}{t^{2}ln{10}} - \frac{3e^{t}cos^{2}(t)}{ln{10}} - \frac{3e^{t}*-0cos^{2}(t)}{ln^{2}{10}} - \frac{3e^{t}*-2cos(t)sin(t)}{ln{10}} + \frac{3e^{t}sin^{2}(t)}{ln{10}} + \frac{3e^{t}*-0sin^{2}(t)}{ln^{2}{10}} + \frac{3e^{t}*2sin(t)cos(t)}{ln{10}} - \frac{24*-e^{t}cos^{2}(t)}{t^{2}ln{10}} - \frac{24e^{t}cos^{2}(t)}{tln{10}} - \frac{24e^{t}*-0cos^{2}(t)}{tln^{2}{10}} - \frac{24e^{t}*-2cos(t)sin(t)}{tln{10}} + \frac{23*-e^{t}sin(t)cos(t)}{t^{2}ln{10}} + \frac{23e^{t}sin(t)cos(t)}{tln{10}} + \frac{23e^{t}*-0sin(t)cos(t)}{tln^{2}{10}} + \frac{23e^{t}cos(t)cos(t)}{tln{10}} + \frac{23e^{t}sin(t)*-sin(t)}{tln{10}} - \frac{6*-3e^{t}sin(t)cos(t)}{t^{4}ln{10}} - \frac{6e^{t}sin(t)cos(t)}{t^{3}ln{10}} - \frac{6e^{t}*-0sin(t)cos(t)}{t^{3}ln^{2}{10}} - \frac{6e^{t}cos(t)cos(t)}{t^{3}ln{10}} - \frac{6e^{t}sin(t)*-sin(t)}{t^{3}ln{10}} + \frac{9*-2e^{t}cos^{2}(t)}{t^{3}ln{10}} + \frac{9e^{t}cos^{2}(t)}{t^{2}ln{10}} + \frac{9e^{t}*-0cos^{2}(t)}{t^{2}ln^{2}{10}} + \frac{9e^{t}*-2cos(t)sin(t)}{t^{2}ln{10}} + \frac{24*-e^{t}sin^{2}(t)}{t^{2}ln{10}} + \frac{24e^{t}sin^{2}(t)}{tln{10}} + \frac{24e^{t}*-0sin^{2}(t)}{tln^{2}{10}} + \frac{24e^{t}*2sin(t)cos(t)}{tln{10}} - 3e^{t}lg(t)cos^{2}(t) - \frac{3e^{t}cos^{2}(t)}{ln{10}(t)} - 3e^{t}lg(t)*-2cos(t)sin(t) + 3e^{t}lg(t)sin^{2}(t) + \frac{3e^{t}sin^{2}(t)}{ln{10}(t)} + 3e^{t}lg(t)*2sin(t)cos(t) - \frac{6e^{t}sin^{2}(t)}{ln{10}} - \frac{6te^{t}sin^{2}(t)}{ln{10}} - \frac{6te^{t}*-0sin^{2}(t)}{ln^{2}{10}} - \frac{6te^{t}*2sin(t)cos(t)}{ln{10}} - \frac{9*-2e^{t}sin^{2}(t)}{t^{3}ln{10}} - \frac{9e^{t}sin^{2}(t)}{t^{2}ln{10}} - \frac{9e^{t}*-0sin^{2}(t)}{t^{2}ln^{2}{10}} - \frac{9e^{t}*2sin(t)cos(t)}{t^{2}ln{10}}\\=&73e^{t}lg(t)sin(t)cos(t) + \frac{176e^{t}sin(t)cos(t)}{tln{10}} + 68e^{t}lg(t)cos^{2}(t) - 68e^{t}lg(t)sin^{2}(t) - 74te^{t}lg(t)sin(t)cos(t) + \frac{34e^{t}sin(t)cos(t)}{ln{10}} + 16te^{t}lg(t)cos^{2}(t) - 7t^{2}e^{t}lg(t)sin(t)cos(t) + \frac{44e^{t}cos^{2}(t)}{ln{10}} - \frac{44e^{t}sin^{2}(t)}{ln{10}} - 12t^{2}e^{t}lg(t)cos^{2}(t) - 16te^{t}lg(t)sin^{2}(t) - \frac{44te^{t}sin(t)cos(t)}{ln{10}} + 12t^{2}e^{t}lg(t)sin^{2}(t) - \frac{4te^{t}cos^{2}(t)}{ln{10}} - \frac{28e^{t}sin(t)cos(t)}{t^{3}ln{10}} + \frac{44e^{t}cos^{2}(t)}{t^{2}ln{10}} - \frac{48e^{t}sin(t)cos(t)}{t^{2}ln{10}} + \frac{18e^{t}sin(t)cos(t)}{t^{4}ln{10}} - \frac{4e^{t}cos^{2}(t)}{tln{10}} - \frac{44e^{t}sin^{2}(t)}{t^{2}ln{10}} - \frac{24e^{t}cos^{2}(t)}{t^{3}ln{10}} + \frac{4e^{t}sin^{2}(t)}{tln{10}} + \frac{4te^{t}sin^{2}(t)}{ln{10}} + \frac{24e^{t}sin^{2}(t)}{t^{3}ln{10}}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。