本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数arcsin(\frac{πx}{4}) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = arcsin(\frac{1}{4}πx)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( arcsin(\frac{1}{4}πx)\right)}{dx}\\=&(\frac{(\frac{1}{4}π)}{((1 - (\frac{1}{4}πx)^{2})^{\frac{1}{2}})})\\=&\frac{π}{4(\frac{-1}{16}π^{2}x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{π}{4(\frac{-1}{16}π^{2}x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&\frac{(\frac{\frac{-1}{2}(\frac{-1}{16}π^{2}*2x + 0)}{(\frac{-1}{16}π^{2}x^{2} + 1)^{\frac{3}{2}}})π}{4} + 0\\=&\frac{π^{3}x}{64(\frac{-1}{16}π^{2}x^{2} + 1)^{\frac{3}{2}}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{π^{3}x}{64(\frac{-1}{16}π^{2}x^{2} + 1)^{\frac{3}{2}}}\right)}{dx}\\=&\frac{(\frac{\frac{-3}{2}(\frac{-1}{16}π^{2}*2x + 0)}{(\frac{-1}{16}π^{2}x^{2} + 1)^{\frac{5}{2}}})π^{3}x}{64} + \frac{π^{3}}{64(\frac{-1}{16}π^{2}x^{2} + 1)^{\frac{3}{2}}}\\=&\frac{3π^{5}x^{2}}{1024(\frac{-1}{16}π^{2}x^{2} + 1)^{\frac{5}{2}}} + \frac{π^{3}}{64(\frac{-1}{16}π^{2}x^{2} + 1)^{\frac{3}{2}}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{3π^{5}x^{2}}{1024(\frac{-1}{16}π^{2}x^{2} + 1)^{\frac{5}{2}}} + \frac{π^{3}}{64(\frac{-1}{16}π^{2}x^{2} + 1)^{\frac{3}{2}}}\right)}{dx}\\=&\frac{3(\frac{\frac{-5}{2}(\frac{-1}{16}π^{2}*2x + 0)}{(\frac{-1}{16}π^{2}x^{2} + 1)^{\frac{7}{2}}})π^{5}x^{2}}{1024} + \frac{3π^{5}*2x}{1024(\frac{-1}{16}π^{2}x^{2} + 1)^{\frac{5}{2}}} + \frac{(\frac{\frac{-3}{2}(\frac{-1}{16}π^{2}*2x + 0)}{(\frac{-1}{16}π^{2}x^{2} + 1)^{\frac{5}{2}}})π^{3}}{64} + 0\\=&\frac{15π^{7}x^{3}}{16384(\frac{-1}{16}π^{2}x^{2} + 1)^{\frac{7}{2}}} + \frac{9π^{5}x}{1024(\frac{-1}{16}π^{2}x^{2} + 1)^{\frac{5}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!